Spatio-Temporal Convolutional Neural Network for Frame Rate Up-Conversion

被引:0
|
作者
Tanaka, Yusuke [1 ]
Omori, Toshiaki [1 ]
机构
[1] Kobe Univ, Dept Elect & Elect Engn, Grad Sch Engn, Nada Ku, 1-1 Rokkodai Cho, Kobe, Hyogo, Japan
来源
2019 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, METAHEURISTICS & SWARM INTELLIGENCE (ISMSI 2019) | 2019年
基金
日本科学技术振兴机构;
关键词
Neural networks; Machine learning; Frame rate up-conversion; High-dimensional time-series data mining; Spatio-temporal pattern recognition;
D O I
10.1145/3325773.3325777
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The visual quality of the video is improved by realizing higher resolution and higher frame rate. In order to realize higher frame rate, we propose new frame rate up-conversion method using spatio-temporal convolutional neural network. In recent years, with the development of machine learning techniques such as convolutional neural networks, clearer interpolation frame estimation has been realized. However, with the conventional convolutional neural network method, it is difficult to estimate an accurate interpolation frames for video including complex motion. In order to deal with this problem, we adopted spatio-temporal convolution rather than conventional spatial convolution. Spatio-temporal convolution is thought to be effective for nonlinear motion because it can capture the time change of the motion of the object. We verified the effectiveness of the proposed method by using video data including complex motions such as rotational motion and scaling.
引用
收藏
页码:35 / 39
页数:5
相关论文
共 50 条
  • [1] Spatio-temporal Saliency-based Motion Vector Refinement for Frame Rate Up-conversion
    He, Jiale
    Yang, Gaobo
    Liu, Xin
    Ding, Xiangling
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2020, 16 (02)
  • [2] A spatio-temporal autoregressive frame rate up conversion scheme
    Zhang, Yongbing
    Zhao, Debin
    Ji, Xiangyang
    Wang, Ronggang
    Chen, Xilin
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 441 - +
  • [3] SPATIAL AND TEMPORAL CORRELATION BASED FRAME RATE UP-CONVERSION
    Ling, Yang
    Wang, Jin
    Liu, Yunqiang
    Zhang, Wenjun
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 909 - 912
  • [4] Quaternion Wavelet Frame Rate Up-Conversion
    Khoubani, Sahar
    Moradi, Mohammad Hassan
    Sheikhhosseini, Monireh
    2017 24TH NATIONAL AND 2ND INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2017, : 193 - 197
  • [5] FRAME RATE UP-CONVERSION USING NONPARAMETRIC ESTIMATOR
    Dehghannasiri, Roozbeh
    Soroushmehr, S. M. Reza
    Shirani, Shahram
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3872 - 3876
  • [6] Frame rate up-conversion using perspective transform
    Choi, Byeong-Doo
    Han, Jong-Woo
    Kim, Chang-Su
    Ko, Sung-Jea
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2006, 52 (03) : 975 - 982
  • [7] Frame rate up-conversion based on mixed interpolation
    Dong, YZ
    Zheng, SB
    Fang, XZ
    Yang, YH
    ELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY III, 2002, 4925 : 301 - 306
  • [8] Dual Motion Estimation for Frame Rate Up-Conversion
    Kang, Suk-Ju
    Yoo, Sungjoo
    Kim, Young Hwan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2010, 20 (12) : 1909 - 1914
  • [9] A Spatio-temporal Fully Convolutional Recurrent Neural Network Based Surface Topography Prediction
    Shao Y.
    Tan J.
    Lu J.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (20): : 292 - 304
  • [10] A Spatio-Temporal Auto Regressive Model for Frame Rate Upconversion
    Zhang, Yongbing
    Zhao, Debin
    Ji, Xiangyang
    Wang, Ronggang
    Gao, Wen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2009, 19 (09) : 1289 - 1301