A Note on Maurin's Theorem

被引:21
作者
Bombieri, E. [1 ]
Habegger, P. [2 ]
Masser, D. [3 ]
Zannier, U. [4 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[2] ETH, Dept Math, CH-8092 Zurich, Switzerland
[3] Univ Basel, Inst Math, CH-4051 Basel, Switzerland
[4] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
Diophantine geometry; multiplicative dependence; Zilber conjecture; ALGEBRAIC SUBGROUPS; EQUATIONS; POINTS;
D O I
10.4171/RLM/570
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We combine the strategy described in a paper of the first, third and fourth authors with a recent result of the second author to obtain a new proof of Maurids Theorem to the effect that the points satisfying two independent multiplicative relations on a fixed algebraic curve form a finite set when there is no natural obstacle.
引用
收藏
页码:251 / 260
页数:10
相关论文
共 14 条
[1]  
Amoroso F, 1999, J REINE ANGEW MATH, V513, P145
[2]  
Amoroso F., 2000, ANN SCUOLA NORM SUP, V29, P711
[3]   Effective results for points on certain subvarieties of tori [J].
Berczes, Attila ;
Gyory, Kalman ;
Evertse, Jan-Hendrik ;
Pontreau, Corentin .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 147 :69-94
[4]   Intersecting curves and algebraic subgroups: Conjectures and more results [J].
Bombieri, E ;
Masser, D ;
Zannier, U .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (05) :2247-2257
[5]  
Bombieri E, 2003, MICH MATH J, V51, P451
[6]   On unlikely intersections of complex varieties with tori [J].
Bombieri, E. ;
Masser, D. ;
Zannier, U. .
ACTA ARITHMETICA, 2008, 133 (04) :309-323
[7]  
Bombieri E, 1999, INT MATH RES NOTICES, V1999, P1119
[8]  
Bombieri E., 2007, IMRN, V19, P1
[9]  
Bombieri E., 2006, HEIGHTS DIOPHANTINE, V4
[10]  
Bombieri E, 2008, ANN SCUOLA NORM-SCI, V7, P51