A Note on Maurin's Theorem

被引:21
作者
Bombieri, E. [1 ]
Habegger, P. [2 ]
Masser, D. [3 ]
Zannier, U. [4 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[2] ETH, Dept Math, CH-8092 Zurich, Switzerland
[3] Univ Basel, Inst Math, CH-4051 Basel, Switzerland
[4] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
Diophantine geometry; multiplicative dependence; Zilber conjecture; ALGEBRAIC SUBGROUPS; EQUATIONS; POINTS;
D O I
10.4171/RLM/570
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We combine the strategy described in a paper of the first, third and fourth authors with a recent result of the second author to obtain a new proof of Maurids Theorem to the effect that the points satisfying two independent multiplicative relations on a fixed algebraic curve form a finite set when there is no natural obstacle.
引用
收藏
页码:251 / 260
页数:10
相关论文
共 14 条
  • [1] Amoroso F, 1999, J REINE ANGEW MATH, V513, P145
  • [2] Amoroso F., 2000, ANN SCUOLA NORM SUP, V29, P711
  • [3] Effective results for points on certain subvarieties of tori
    Berczes, Attila
    Gyory, Kalman
    Evertse, Jan-Hendrik
    Pontreau, Corentin
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 147 : 69 - 94
  • [4] Intersecting curves and algebraic subgroups: Conjectures and more results
    Bombieri, E
    Masser, D
    Zannier, U
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (05) : 2247 - 2257
  • [5] Bombieri E, 2003, MICH MATH J, V51, P451
  • [6] On unlikely intersections of complex varieties with tori
    Bombieri, E.
    Masser, D.
    Zannier, U.
    [J]. ACTA ARITHMETICA, 2008, 133 (04) : 309 - 323
  • [7] Bombieri E, 1999, INT MATH RES NOTICES, V1999, P1119
  • [8] Bombieri E., 2007, IMRN, V19, P1
  • [9] Bombieri E., 2006, HEIGHTS DIOPHANTINE, V4
  • [10] Bombieri E, 2008, ANN SCUOLA NORM-SCI, V7, P51