On a pair of fuzzy φ-contractive mappings

被引:47
作者
Azam, Akbar [3 ]
Arshad, Muhammad [2 ]
Vetro, Pasquale [1 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, I-90123 Palermo, Italy
[2] Int Islamic Univ, Dept Math, Islamabad 44000, Pakistan
[3] COMSATS Inst Informat Technol, Dept Math, Islamabad 44000, Pakistan
关键词
Fixed point; Common fixed point; Contractive type mapping; Fuzzy mapping; FIXED-POINT THEOREMS; SPACE; MAPS;
D O I
10.1016/j.mcm.2010.02.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We establish common fixed point theorems for fuzzy mappings under phi-contraction condition on a metric space with the d(infinity)-metric (induced by the Hausdorff metric) on the family of fuzzy sets. The study of fixed points of fuzzy set-valued mappings related to the d(infinity)-metric is useful in geometric problems arising in high energy physics. Our results generalize some recent results. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 20 条
[1]   Common fixed point theorems for fuzzy mappings in metric space under φ-contraction condition [J].
Abu-Donia, H. M. .
CHAOS SOLITONS & FRACTALS, 2007, 34 (02) :538-543
[2]   Fixed point theorems for fuzzy mappings [J].
Arora, SC ;
Sharma, V .
FUZZY SETS AND SYSTEMS, 2000, 110 (01) :127-130
[3]   Fixed points of fuzzy contractive and fuzzy locally contractive maps [J].
Azam, Akbar ;
Arshad, Muhammad ;
Beg, Ismat .
CHAOS SOLITONS & FRACTALS, 2009, 42 (05) :2836-2841
[4]   Common fixed points of fuzzy maps [J].
Azam, Akbar ;
Beg, Ismat .
MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (7-8) :1331-1336
[5]   FIXED-POINTS OF ASYMPTOTICALLY REGULAR MULTIVALUED MAPPINGS [J].
BEG, I ;
AZAM, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1992, 53 :313-326
[6]   FUZZY MAPPINGS AND FIXED-POINT THEOREMS [J].
BOSE, RK ;
SAHANI, D .
FUZZY SETS AND SYSTEMS, 1987, 21 (01) :53-58
[7]   FIXED-POINTS FOR FUZZY MAPPINGS [J].
BUTNARIU, D .
FUZZY SETS AND SYSTEMS, 1982, 7 (02) :191-207
[8]  
Edelstein M., 1962, J. London Math. Soc, V37, P74, DOI [10.1112/jlms/s1-37.1.74, DOI 10.1112/JLMS/S1-37.1.74]
[9]  
Edelstein M., 1961, Proc.Amer.Math.Soc., V12, P7
[10]  
El Naschie MS, 2006, INT J NONLIN SCI NUM, V7, P407