Biometric Authentication of Person using finger knuckle

被引:0
|
作者
Waghode, Arti B. [1 ]
Manjare, C. A. [1 ]
机构
[1] JSPMS JSCOE, Digital Syst, Pune, Maharashtra, India
来源
2017 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA) | 2017年
关键词
LDA; PCA; Gabor filter; identification; image processing; SURFACE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Finger knuckle print can be extremely beneficial for person identity. Finger knuckle as a new biometric approach which supplying huge scope for researchers in few years. In this system we present a finger knuckle authentication method by using subspace techniques. In implemented system we use the three techniques with one classifier, first we use Gabor filter in preprocessing step for removing the noise from acquired image and we get the noise free image. Secondly we use PCA for feature extraction and then last we use the LDA and PNN classifier for matching purpose. Result obtained from PNN classifier which gives the approximately 90% recognition rate. Comparatively it improves the efficiency and accuracy of the Finger Knuckle recognition.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Efficient multimodal ocular biometric system for person authentication based on iris texture and corneal shape
    Kihal, Nassima
    Chitroub, Salim
    Polette, Arnaud
    Brunette, Isabelle
    Meunier, Jean
    IET BIOMETRICS, 2017, 6 (06) : 379 - 386
  • [32] Finger-Knuckle-Print for Identity Verification Based on Difference Images
    Kim, Jooyoung
    Oh, Kangrok
    Teoh, Beng-Jin
    Toh, Kar-Ann
    PROCEEDINGS OF THE 2016 IEEE 11TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2016, : 1073 - 1077
  • [33] Biometric Authentication using Circular Segment around Optical Disc
    Ahmed, M. Islamuddin
    Awal, M. Abdul
    Amin, M. Ashraful
    2012 INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV), 2012, : 178 - 183
  • [34] HE-Co-HOG and k-SVM classifier for finger knuckle and palm print-based multimodal biometric recognition
    Veluchamy, S.
    Karlmarx, L. R.
    SENSOR REVIEW, 2020, 40 (02) : 203 - 216
  • [35] Multimodal biometric authentication: A review
    Pahuja, Swimpy
    Goel, Navdeep
    AI COMMUNICATIONS, 2024, 37 (04) : 525 - 547
  • [36] Multimodal Biometric Using a Hierarchical Fusion of a Person's Face, Voice, and Online Signature
    Elmir, Youssef
    Elberrichi, Zakaria
    Adjoudj, Reda
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2014, 10 (04): : 555 - 567
  • [37] Multi Model Personal Authentication Using Finger Vein and Face Images (MPAFFI)
    Manjunathswamy, B. E.
    Thriveni, J.
    Venugopal, K. R.
    Patnaik, L. M.
    2014 INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (PDGC), 2014, : 339 - 344
  • [38] DeepKnuckle: Deep Learning for Finger Knuckle Print Recognition
    Tarawneh, Ahmad S.
    Hassanat, Ahmad B.
    Alkafaween, Esra'a
    Sarayrah, Bayan
    Mnasri, Sami
    Altarawneh, Ghada A.
    Alrashidi, Malek
    Alghamdi, Mansoor
    Almuhaimeed, Abdullah
    ELECTRONICS, 2022, 11 (04)
  • [39] Finger Knuckle Print Recognition Based on Gabor feature and KPCA plus LDA
    Swati, M. R.
    Ravishankar, M.
    2013 INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN COMMUNICATION, CONTROL, SIGNAL PROCESSING AND COMPUTING APPLICATIONS (IEEE-C2SPCA-2013), 2013,
  • [40] Discriminative common vector based finger knuckle recognition
    Ozkaya, Necla
    Kurat, Neslihan
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (07) : 1647 - 1675