Segmentation and classification of EEG during epileptic seizures

被引:21
|
作者
Wu, L
Gotman, J
机构
[1] McGill Univ, Montreal Neurol Inst, Montreal, PQ H3A 2B4, Canada
[2] McGill Univ, Dept Neurol & Neurosurg, Montreal, PQ H3A 2B4, Canada
来源
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY | 1998年 / 106卷 / 04期
关键词
EEG; seizures; segmentation; classification;
D O I
10.1016/S0013-4694(97)00156-9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a method far the automatic comparison of epileptic seizures in EEC, allowing the grouping of seizures having similar overall patterns. Each channel of the EEG is first broken down into segments having relatively stationary characteristics. Features are then calculated for each segment and all segments of all channels of the seizures of one patient are grouped into clusters of similar morphology. This clustering allows labeling of every EEG segment. Methods derived from string matching procedures are then used to obtain an overall edit distance between two seizures, a distance that represents how the two seizures, taken in their entirety and including the channels not actually involved in the discharge, resemble each other, Examples from 5 patients, 3 with intracerebral electrodes and two with scalp electrodes, illustrate the ability of the, method to group seizures of similar morphology. (C) 1998 Elsevier Science Ireland Ltd.
引用
收藏
页码:344 / 356
页数:13
相关论文
共 50 条
  • [31] Synchroextracting chirplet transform-based epileptic seizures detection using EEG
    Jiang, Yun
    Chen, Wanzhong
    Li, Mingyang
    Zhang, Tao
    You, Yang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68
  • [32] Similarity-Based Adaptive Window for Improving Classification of Epileptic Seizures with Imbalance EEG Data Stream
    Fatlawi, Hayder K.
    Kiss, Attila
    ENTROPY, 2022, 24 (11)
  • [33] Identifying an increased risk of epileptic seizures using a multi-feature EEG-ECG classification
    Valderrama, M.
    Alvarado, C.
    Nikolopoulos, S.
    Martinerie, J.
    Adam, C.
    Navarro, V.
    Quyen, M. Le Van
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2012, 7 (03) : 237 - 244
  • [34] Automatic Identification of Epileptic Seizures From EEG Signals Using Sparse Representation-Based Classification
    Sheykhivand, Sobhan
    Rezaii, Tohid Yousefi
    Mousavi, Zohreh
    Delpak, Azra
    Farzamnia, Ali
    IEEE ACCESS, 2020, 8 : 138834 - 138845
  • [35] Cardiogenic syncope diagnosed as epileptic seizures: the importance of ECG during video-EEG recording
    Mayor, Luis C.
    Lemus, Hernan N.
    Burneo, Jorge
    Cristina Palacio, Ana
    Linares, Sergio
    EPILEPTIC DISORDERS, 2015, 17 (02) : 198 - 203
  • [36] Double Discrete Variational Autoencoder for Epileptic EEG Signals Classification
    Liang, Shufeng
    Zhang, Xin
    Zhao, Hulin
    Dang, Yuanyuan
    Hui, Rui
    Zhang, Jianning
    IEEE ACCESS, 2024, 12 : 106567 - 106578
  • [37] Classification of Epileptic EEG Signals Using Dynamic Mode Decomposition
    Cura, Ozlem Karabiber
    Pehlivan, Sude
    Akan, Aydin
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [38] Using Recurrent ANNs for the Detection of Epileptic Seizures in EEG Signals
    Rivero, Daniel
    Fernandez-Blanco, Enrique
    Dorado, Julian
    Pazos, Alejandro
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 587 - 592
  • [39] EEG Signals Classification for Epileptic Detection: A review
    Houssein, Essam H.
    Hassanien, Aboul Ella
    Ismaeel, Alaa A. K.
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, DATA AND CLOUD COMPUTING (ICC 2017), 2017,
  • [40] Identification of Epileptic Seizures by Characterizing Instantaneous Energy Behavior of EEG
    Zhao, Xian
    Zhang, Renjie
    Mei, Zhenning
    Chen, Chen
    Chen, Wei
    IEEE ACCESS, 2019, 7 : 70059 - 70076