Non-enzymatic D-glucose plasmonic optical fiber grating biosensor

被引:76
作者
Lobry, Maxime [1 ]
Lahem, Driss [2 ]
Loyez, Mederic [3 ]
Debliquy, Marc [4 ]
Chah, Karima [1 ]
David, Mariel [1 ]
Caucheteur, Christophe [1 ]
机构
[1] Univ Mons, Electromagnetism & Telecommun Dept, 31 Bld Dolez, B-7000 Mons, Belgium
[2] Mat Nova ASBL, Mat R&D Ctr, Ave Nicolas Copernic 3, B-7000 Mons, Belgium
[3] Univ Mons, Prote & Microbiol Dept, 6 Av Champ Mars, B-7000 Mons, Belgium
[4] Univ Mons, Mat Sci Dept, 56 Rue Epargne, B-7000 Mons, Belgium
关键词
Non-enzymatic; D-glucose biosensor; Tilted fiber Bragg grating; Surface plasmon resonance; Polydopamine; Concanavalin A; CONCANAVALIN-A; BINDING; RECOGNITION; RESONANCE; PROTEIN;
D O I
10.1016/j.bios.2019.111506
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Saccharide sensors represent a broad research area in the scope of sensing devices and their involvement in the medical diagnosis field is particularly relevant for cancer detection at early stage. In that context, we present a non-enzymatic optical fiber-based sensor that makes use of plasmon-assisted tilted fiber Bragg gratings (TFBGs) functionalized for D-glucose biosensing through polydopamine (PDA)-immobilized concanavalin A (Con A). Our probe allows a live and accurate monitoring of the PDA layer deposition leading improved surface biochemistry. The SPR shift observed was assessed to 3.83 +/- 0.05 nm within 20 min for a 2 mg/mL dopamine solution. Tests performed in different D-Glucose solutions have revealed a limit of detection close to 10(-7) M with the highest sensitivity in the 10(-6) to 10(-4) M range. This configuration has the capability to overcome the limitations of current enzyme-based solutions.
引用
收藏
页数:6
相关论文
共 36 条
  • [1] Diabetes and cardiovascular events in hypertensive patients
    Alderman, MH
    Cohen, H
    Madhavan, S
    [J]. HYPERTENSION, 1999, 33 (05) : 1130 - 1134
  • [2] Aptamer-based Field-Effect Biosensor for Tenofovir Detection
    Aliakbarinodehi, N.
    Jolly, P.
    Bhalla, N.
    Miodek, A.
    De Micheli, G.
    Estrela, P.
    Carrara, S.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [3] Lectins: tools for the molecular understanding of the glycocode
    Ambrosi, M
    Cameron, NR
    Davis, BG
    [J]. ORGANIC & BIOMOLECULAR CHEMISTRY, 2005, 3 (09) : 1593 - 1608
  • [4] BECKER JW, 1975, J BIOL CHEM, V250, P1513
  • [5] [INVITED] Cell sensing with near-infrared plasmonic optical fiber sensors
    Caucheteur, Christophe
    Malachovska, Viera
    Ribaut, Clotilde
    Wattiez, Ruddy
    [J]. OPTICS AND LASER TECHNOLOGY, 2016, 78 : 116 - 121
  • [6] Review of plasmonic fiber optic biochemical sensors: improving the limit of detection
    Caucheteur, Christophe
    Guo, Tuan
    Albert, Jacques
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2015, 407 (14) : 3883 - 3897
  • [7] Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity
    Caucheteur, Christophe
    Voisin, Valerie
    Albert, Jacques
    [J]. OPTICS EXPRESS, 2015, 23 (03): : 2918 - 2932
  • [8] Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose
    Dong, Ya-lei
    Zhang, Hui-ge
    Rahman, Zia Ur
    Su, Li
    Chen, Xiao-jiao
    Hu, Jing
    Chen, Xing-guo
    [J]. NANOSCALE, 2012, 4 (13) : 3969 - 3976
  • [9] Tilted fiber phase gratings
    Erdogan, T
    Sipe, JE
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1996, 13 (02) : 296 - 313
  • [10] Development of a novel micro biosensor for in vivo monitoring of glutamate release in the brain
    Ganesana, Mallikarjunarao
    Trikantzopoulos, Elefterios
    Maniar, Yash
    Lee, Scott T.
    Venton, B. Jill
    [J]. BIOSENSORS & BIOELECTRONICS, 2019, 130 : 103 - 109