Exact recovery low-rank matrix via transformed affine matrix rank minimization
被引:2
作者:
Cui, Angang
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Cui, Angang
[1
]
Peng, Jigen
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Peng, Jigen
[2
]
Li, Haiyang
论文数: 0引用数: 0
h-index: 0
机构:
Xian Polytech Univ, Sch Sci, Xian 710048, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Li, Haiyang
[3
]
机构:
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] Xian Polytech Univ, Sch Sci, Xian 710048, Shaanxi, Peoples R China
The goal of affine matrix rank minimization problem is to reconstruct a low-rank or approximately low-rank matrix under linear constraints. In general, this problem is combinatorial and NP-hard. In this paper, a nonconvex fraction function is studied to approximate the rank of a matrix and translate this NP-hard problem into a transformed affine matrix rank minimization problem. The equivalence between these two problems is established, and we proved that the uniqueness of the global minimizer of transformed affine matrix rank minimization problem also solves affine matrix rank minimization problem if some conditions are satisfied. Moreover, we also proved that the optimal solution to the transformed affine matrix rank minimization problem can be approximately obtained by solving its regularization problem for some proper smaller lambda > 0. Lastly, the DC algorithm is utilized to solve the regularization transformed affine matrix rank minimization problem and the numerical experiments on image inpainting problems show that our method performs effectively in recovering low-rank images compared with some state-of-art algorithms. (c) 2018 Elsevier B.V. All rights reserved.
机构:
Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USAPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Brodie, Joshua
Daubechies, Ingrid
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Princeton Univ, Dept Math, Princeton, NJ 08544 USAPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Daubechies, Ingrid
De Mol, Christine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Libre Bruxelles, Dept Math, European Ctr Adv Res Econ & Stat, B-1050 Brussels, BelgiumPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
De Mol, Christine
Giannone, Domenico
论文数: 0引用数: 0
h-index: 0
机构:
European Cent Bank, European Ctr Adv Res Econ & Stat, London EC1V ODG, England
Ctr Econ Policy Res, London EC1V ODG, EnglandPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
机构:
Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USAPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Brodie, Joshua
Daubechies, Ingrid
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Princeton Univ, Dept Math, Princeton, NJ 08544 USAPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Daubechies, Ingrid
De Mol, Christine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Libre Bruxelles, Dept Math, European Ctr Adv Res Econ & Stat, B-1050 Brussels, BelgiumPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
De Mol, Christine
Giannone, Domenico
论文数: 0引用数: 0
h-index: 0
机构:
European Cent Bank, European Ctr Adv Res Econ & Stat, London EC1V ODG, England
Ctr Econ Policy Res, London EC1V ODG, EnglandPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA