The functional-differential equation y′(t)=Ay(t)+By(qt)+Cy′(qt)+f(t)

被引:20
作者
Lehninger, H [1 ]
Liu, YK
机构
[1] Vienna Tech Univ, Inst Anal Tech Math & Versicherungsmath, A-1040 Vienna, Austria
[2] Univ Cambridge Gonville & Caius Coll, Cambridge CB2 1TA, England
关键词
D O I
10.1017/S0956792597003343
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An initial value problem for the functional differential equation y'(t)=Ay(t)+By(qt)+Cy'(qt)+f(t), t greater than or equal to t(0) > 0, where A, B, C are complex matrices, q is an element of(0, 1), and f is a vector of continuous functions, is considered in this paper. Its solution is represented in terms of the fundamental solution via the variation-of-constants formula. For some special cases, the fundamental solutions are formulated as piecewise Dirichlet series. The variation-of-constants formula is used to analysis the asymptotic behaviour of the solutions of some scalar equations, including one with variable coefficients related to coherent states of the q-oscillator algebra in quantum mechanics.
引用
收藏
页码:81 / 91
页数:11
相关论文
共 32 条
[11]  
Fox L., 1971, Journal of the Institute of Mathematics and Its Applications, V8, P271
[12]  
FREDERICKSON PO, 1971, LECT NOTES MATH, V243, P247
[13]  
GASPAR G, 1990, BASIC HYPERGEOMETRIC
[14]  
HAHN W, 1973, UBER FUNKTIONAL DIFF, P3
[15]  
Hale J. K., 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
[16]   ON NONLINEAR DELAY-DIFFERENTIAL EQUATIONS [J].
ISERLES, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 344 (01) :441-477
[17]   On neutral functional-differential equations with proportional delays [J].
Iserles, A ;
Liu, YK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 207 (01) :73-95
[18]   Integro-differential equations and generalized hypergeometric functions [J].
Iserles, A ;
Liu, YK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 208 (02) :404-424
[19]  
Iserles Arieh., 1993, EUR J APPL MATH, V4, P1, DOI [DOI 10.1017/S0956792500000966, 10.1017/S0956792500000966, DOI 10.1017/S0956792500000966)]
[20]  
KATO T, 1971, B AM MATH SOC, V77, P891