Lost in translation: The Abelian affine connection (in the coincident gauge)

被引:32
作者
Beltran Jimenez, Jose [1 ,2 ]
Koivisto, Tomi S. [3 ,4 ]
机构
[1] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain
[2] Univ Salamanca, IUFFyM, E-37008 Salamanca, Spain
[3] Univ Tartu, Inst Phys, Lab Theoret Phys, W Ostwaldi 1, EE-50411 Tartu, Estonia
[4] NICPB, Ravala Pst 10, EE-10143 Tallinn, Estonia
关键词
Gravity; teleparallel geometry; coincident gauge; GRAVITY;
D O I
10.1142/S0219887822501080
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The simplest, i.e. the Abelian, i.e. the commutative, i.e. the integrable, i.e. the flat and torsion-free, i.e. the symmetric teleparallel affine connection has been considered in many recent works in the literature. Such an affine connection is characterized by the property that it can be vanished by a general coordinate transformation, by fixing the so-called coincident gauge. This paper focuses on the subtleties involved in the applications of the coincident gauge.
引用
收藏
页数:19
相关论文
共 68 条
  • [51] An integrable geometrical foundation of gravity
    Koivisto, Tomi
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15
  • [52] Scale-invariant cosmology in de Sitter gauge theory
    Koivisto, Tomi S.
    Zheng, Luxi
    [J]. PHYSICAL REVIEW D, 2021, 103 (12)
  • [53] Kretschmann E, ANN PHYS-NEW YORK, V358
  • [54] Spherically symmetric configuration in f (Q) gravity
    Lin, Rui-Hui
    Zhai, Xiang-Hua
    [J]. PHYSICAL REVIEW D, 2021, 103 (12)
  • [55] Conformal inflation in the metric-affine geometry
    Mikura, Y.
    Tada, Y.
    Yokoyama, S.
    [J]. EPL, 2020, 132 (03)
  • [56] Nakayama Y, PREPRINT 2021 ARXIV2
  • [57] Nester JM, 1999, CHINESE J PHYS, V37, P113
  • [58] GENERAL COVARIANCE AND THE FOUNDATIONS OF GENERAL-RELATIVITY - 8 DECADES OF DISPUTE
    NORTON, JD
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1993, 56 (07) : 791 - 858
  • [59] Demystifying autoparallels in alternative gravity
    Obukhov, Yuri N.
    Puetzfeld, Dirk
    [J]. PHYSICAL REVIEW D, 2021, 104 (04)
  • [60] Penrose R., 2011, Cambridge Monographs on Mathematical Physics, V4