Ionic Transport in Electrostatic Janus Membranes. An Explicit Solvent Molecular Dynamic Simulation

被引:16
作者
de Oca, Joan M. Montes [1 ,2 ]
Dhanasekaran, Johnson [1 ,2 ]
Cordoba, Andres [1 ,2 ]
Darling, Seth B. [1 ,2 ,3 ]
de Pablo, Juan J. [1 ,2 ,3 ]
机构
[1] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[2] Argonne Natl Lab, Adv Mat Energy Water Syst AMEWS Energy Frontier R, Lemont, IL 60439 USA
[3] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
关键词
power generation; Janus membrane; nanofluidics; ionic transport; nonequilibrium molecular dynamics; CURRENT RECTIFICATION; WATER; NANOPORES; DIODE;
D O I
10.1021/acsnano.1c07706
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Janus, or two-sided, charged membranes offer promise as ionic current rectifiers. In such systems, pores consisting of two regions of opposite charge can be used to generate a current from a gradient in salinity. The efficiency of nanoscale Janus pores increases dramatically as their diameter becomes smaller. However, little is known about the underlying transport processes, particularly under experimentally accessible conditions. In this work, we examine the molecular basis for rectification in Janus nanopores using an applied electric field. Molecular simulations with explicit water and ions are used to examine the structure and dynamics of all molecular species in aqueous electrolyte solutions. For several macroscopic observables, the results of such simulations are consistent with experimental observations on asymmetric membranes. Our analysis reveals a number of previously unknown features, including a pronounced local reorientation of water molecules in the pores, and a segregation of ionic species that had not been anticipated by previously reported continuum analyses of Janus pores. Using these insights, a model is proposed for ionic current rectification in which electric leakage at the pore entrance controls net transport.
引用
收藏
页码:3768 / 3775
页数:8
相关论文
共 35 条
[1]   Hydrophobicity and geometry: Water at curved graphitic-like surfaces and within model pores in self-assembled monolayers [J].
Alarcon, L. M. ;
Montes de Oca, J. M. ;
Accordino, S. R. ;
Rodriguez Fris, J. A. ;
Appignanesi, G. A. .
FLUID PHASE EQUILIBRIA, 2014, 362 :81-86
[2]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[3]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[4]   Nanofluidics coming of age [J].
Bocquet, Lyderic .
NATURE MATERIALS, 2020, 19 (03) :254-256
[5]   Nanofluidics, from bulk to interfaces [J].
Bocquet, Lyderic ;
Charlaix, Elisabeth .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (03) :1073-1095
[6]   Nanofluidic diodes [J].
Cheng, Li-Jing ;
Guo, L. Jay .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (03) :923-938
[7]   Poisson-Nernst -Planck model of ion current rectification through a nanofluidic diode [J].
Constantin, Dragos ;
Siwy, Zuzanna S. .
PHYSICAL REVIEW E, 2007, 76 (04)
[8]   Structure and dynamics of nanoconfined water and aqueous solutions [J].
Corti, Horacio R. ;
Appignanesi, Gustavo A. ;
Barbosa, Marcia C. ;
Bordin, J. Rafael ;
Calero, Carles ;
Camisasca, Gaia ;
Dolores Elola, M. ;
Franzese, Giancarlo ;
Gallo, Paola ;
Hassanali, Ali ;
Huang, Kai ;
Laria, Daniel ;
Menendez, Cintia A. ;
Montes de Oca, Joan M. ;
Paula Longinotti, M. ;
Rodriguez, Javier ;
Rovere, Mauro ;
Scherlis, Damian ;
Szleifer, Igal .
EUROPEAN PHYSICAL JOURNAL E, 2021, 44 (11)
[9]   Ionic Current Rectification through Silica Nanopores [J].
Cruz-Chu, Eduardo R. ;
Aksimentiev, Aleksei ;
Schulten, Klaus .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (05) :1850-1862
[10]   Nanofluidic diode and bipolar transistor [J].
Daiguji, H ;
Oka, Y ;
Shirono, K .
NANO LETTERS, 2005, 5 (11) :2274-2280