Unimodular Fourier multipliers for modulation spaces

被引:158
作者
Benyi, Arpad
Groechenig, Karlheinz
Okoudjou, Kasso A.
Rogers, Luke G.
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Western Washington Univ, Dept Math, Bellingham, WA 98225 USA
[3] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[4] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Fourier multiplier; modulation space; short-time Fourier transform; schrodinger equation; wave equation; conservation of energy;
D O I
10.1016/j.jfa.2006.12.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the boundedness of unimodular Fourier multipliers on modulation spaces. Surprisingly, the multipliers with general symbol e(i)vertical bar xi vertical bar(alpha), where alpha is an element of [0, 2], are bounded on all modulation spaces, but, in general, fail to be bounded on the usual L-P-spaces. As a consequence, the phase-space concentration of the solutions to the free Schrodinger and wave equations are preserved. As a byproduct, we also obtain boundedness results on modulation spaces for singular multipliers vertical bar xi vertical bar(-delta) sin(vertical bar xi vertical bar(alpha)) for 0 <= delta <= alpha. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:366 / 384
页数:19
相关论文
共 29 条
[1]  
[Anonymous], 1965, MEM AM MATH SOC
[2]  
[Anonymous], 2006, J FUNCT ANAL
[3]  
[Anonymous], 2003, CLASSICAL MODERN FOU
[4]  
[Anonymous], 1956, DOKL AKAD NAULC SSSR
[5]  
BEALS RM, 1982, MEM AM MATH SOC, V264
[6]   A class of Fourier multipliers for modulation spaces [J].
Bényi, A ;
Grafakos, L ;
Gröchenig, K ;
Okoudjou, K .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (01) :131-139
[7]   Time-frequency analysis of localization operators [J].
Cordero, E ;
Gröchenig, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 205 (01) :107-131
[8]  
Feichtinger H. G., 2006, Sampling Theory in Signal and Image Processing, V5, P109
[9]  
FEICHTINGER H. G., 2003, Wavelets and their applications, P99
[10]   GENERALIZED AMALGAMS, WITH APPLICATIONS TO FOURIER-TRANSFORM [J].
FEICHTINGER, HG .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1990, 42 (03) :395-409