Stability Results for a Timoshenko System with a Fractional Operator in the Memory

被引:10
作者
Astudillo, Maria [1 ]
Oquendo, Higidio Portillo [1 ]
机构
[1] Univ Fed Parana, Math Postgrad Program, Curitiba, Parana, Brazil
关键词
Timoshenko system; Fractional damping; Memory term; Exponential stability; Polynomial decay; ENERGY DECAY; STABILIZATION; FOURIER; RATES;
D O I
10.1007/s00245-019-09587-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior of Timoshenko systems with a fractional operator in the memory term depending on a parameter.. [0, 1] and acting only on one equation of the system. Considering exponentially decreasing kernels, we find exact decay rates. To be precise, we show that for.. [0, 1), the system decay polynomially with rates that depend on the value of the difference of the wave propagation speeds. We also prove that these decay rates are optimal. Moreover, when. = 1 and the equations have the same propagation speeds we obtain the exponential decay of the solutions.
引用
收藏
页码:1247 / 1275
页数:29
相关论文
共 30 条
  • [1] Indirect internal stabilization of weakly coupled evolution equations
    Alabau, F
    Cannarsa, P
    Komornik, V
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2002, 2 (02) : 127 - 150
  • [2] Asymptotic behavior of weakly dissipative Bresse-Timoshenko system on influence of the second spectrum of frequency
    Almeida Junior, D. S.
    Ramos, A. J. A.
    Santos, M. L.
    Gutemberg, L. R. M.
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2018, 98 (08): : 1320 - 1333
  • [3] On the nature of dissipative Timoshenko systems at light of the second spectrum of frequency
    Almeida Junior, D. S.
    Ramos, A. J. A.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (06):
  • [4] Stability to weakly dissipative Timoshenko systems
    Almeida Junior, D. S.
    Santos, M. L.
    Munoz Rivera, J. E.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (14) : 1965 - 1976
  • [5] Stability to 1-D thermoelastic Timoshenko beam acting on shear force
    Almeida Junior, Dilberto da S.
    Santos, M. L.
    Munoz Rivera, J. E.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06): : 1233 - 1249
  • [6] Energy decay for Timoshenko systems of memory type
    Ammar-Khodja, F
    Benabdallah, A
    Rivera, JEM
    Racke, R
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (01) : 82 - 115
  • [7] Stabilization of the nonuniform Timoshenko beam
    Ammar-Khodja, Farid
    Kerbal, Sebti
    Soufyane, Abdelaziz
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) : 525 - 538
  • [8] [Anonymous], 1999, Chapman & Hall/CRC Research Notes in Mathematics
  • [9] On the decay rates of Timoshenko system with second sound
    Apalara, Tijani A.
    Messaoudi, Salim A.
    Keddi, Ahmed A.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) : 2671 - 2684
  • [10] Polynomial stability of the Timoshenko system by one boundary damping
    Bassam, Maya
    Mercier, Denis
    Nicaise, Serge
    Wehbe, Ali
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (02) : 1177 - 1203