Methodology to determine the heat capacity of lithium-ion cells

被引:65
作者
Bryden, Thomas S. [1 ]
Dimitrov, Borislav [1 ]
Hilton, George [1 ]
de Leon, Carlos Ponce [1 ]
Bugryniec, Peter [2 ]
Brown, Solomon [2 ]
Cumming, Denis [2 ]
Cruden, Andrew [1 ]
机构
[1] Univ Southampton, Fac Engn & Environm, Southampton SO14 1BJ, Hants, England
[2] Univ Sheffield, Dept Chem & Biol Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Thermal modelling; Specific heat capacity; Lithium-ion battery; THERMAL MANAGEMENT-SYSTEM; BATTERY; SIMULATION; BEHAVIOR; CYCLES; MODULE; MODEL;
D O I
10.1016/j.jpowsour.2018.05.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper a novel method to determine the specific heat capacity of lithium-ion cells is proposed. The specific heat capacity is an important parameter for the thermal modelling of lithium-ion batteries and is not generally stated on cell datasheets or available from cell manufacturers. To determine the specific heat capacity can require the use of an expensive (> 100 pound k) calorimeter or the deconstruction of the cell whereas the method proposed by the authors in this paper uses common equipment found in most battery laboratories. The method is shown to work for cylindrical, prismatic and pouch cells, with capacities between 2.5 Ah and 10 Ah. The results are validated by determining the specific heat capacity of the cells with use of a calorimeter and a maximum error of 3.9% found. Thermal modelling of batteries is important to ensure cell temperatures are kept within specified limits. This is especially true at rates over 1C, such as the fast charging of electric vehicles, where more heat is generated than lower rate applications. The paper ends by demonstrating how the thermal model that underpins the authors' methodology can be used to model the surface temperature of the cells at C-rates greater than 1C.
引用
收藏
页码:369 / 378
页数:10
相关论文
共 26 条
[1]   Safety focused modeling of lithium-ion batteries: A review [J].
Abada, S. ;
Marlair, G. ;
Lecocq, A. ;
Petit, M. ;
Sauvant-Moynot, V. ;
Huet, F. .
JOURNAL OF POWER SOURCES, 2016, 306 :178-192
[2]   Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles [J].
Al-Zareer, Maan ;
Dincer, Ibrahim ;
Rosen, Marc A. .
JOURNAL OF POWER SOURCES, 2017, 363 :291-303
[3]  
Benger R., 2009, ELECTROCHEMICAL THER
[4]   Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles [J].
Chacko, Salvio ;
Chung, Yongmann M. .
JOURNAL OF POWER SOURCES, 2012, 213 :296-303
[5]   Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery [J].
Forgez, Christophe ;
Do, Dinh Vinh ;
Friedrich, Guy ;
Morcrette, Mathieu ;
Delacourt, Charles .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2961-2968
[6]   Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management [J].
Grandjean, Thomas ;
Barai, Anup ;
Hosseinzadeh, Elham ;
Guo, Yue ;
McGordon, Andrew ;
Marco, James .
JOURNAL OF POWER SOURCES, 2017, 359 :215-225
[7]   3-D CFD modeling and experimental testing of thermal behavior of a Li-Ion battery [J].
Gumussu, Emre ;
Ekici, Ozgur ;
Koksal, Murat .
APPLIED THERMAL ENGINEERING, 2017, 120 :484-495
[8]   A systematic approach for electrochemical-thermal modelling of a large format lithium-ion battery for electric vehicle application [J].
Hosseinzadeh, Elham ;
Genieser, Ronny ;
Worwood, Daniel ;
Barai, Anup ;
Marco, James ;
Jennings, Paul .
JOURNAL OF POWER SOURCES, 2018, 382 :77-94
[9]   Simple Analytical Method for Determining Parameters of Discharging Batteries [J].
Hu, Tingshu ;
Zanchi, Brian ;
Zhao, Jianping .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2011, 26 (03) :787-798
[10]   Streamline three-dimensional thermal model of a lithium titanate pouch cell battery in extreme temperature conditions with module simulation [J].
Jaguemont, Joris ;
Omar, Noshin ;
Martel, Francois ;
Van den Bossche, Peter ;
Van Mierlo, Joeri .
JOURNAL OF POWER SOURCES, 2017, 367 :24-33