Pointwise convergence of double Vilenkin-Fejer means

被引:9
作者
Blahota, I [1 ]
Gát, G [1 ]
机构
[1] Bessenyei Gyorgy Tanarkepzo Foiskola, Matemat Tanszek, H-4401 Nyiregyhaza, Hungary
关键词
Vilenkin-like systems; two parameter Cesaro (C; 1)-means; a.e. pointwise convergence;
D O I
10.1556/SScMath.36.2000.1-2.7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that double Cesaro means of an integrable function on the product of bounded Vilenkin groups with respect to any double Vilenkin-like system converge to the function almost everywhere. The convergence is provided that the quotient of the indices is bounded.
引用
收藏
页码:49 / 63
页数:15
相关论文
共 24 条
[1]  
Agaev G. N., 1981, MULTIPLIKATIVNYE SIS
[2]  
[Anonymous], 1959, TRIGONOMETRIC SERIES
[3]   ON THE EXISTENCE OF CERTAIN SINGULAR INTEGRALS [J].
CALDERON, AP ;
ZYGMUND, A .
ACTA MATHEMATICA, 1952, 88 (03) :85-139
[6]  
GAT G, 1991, COLLOQ MATH, V58, P315
[7]   On the almost everywhere convergence of Fejer means of functions on the group of 2-adic integers [J].
Gat, G .
JOURNAL OF APPROXIMATION THEORY, 1997, 90 (01) :88-96
[8]   ORTHONORMAL SYSTEMS ON VILENKIN GROUPS [J].
GAT, G .
ACTA MATHEMATICA HUNGARICA, 1991, 58 (1-2) :193-198
[9]  
GAT G, 1996, ANN U SCI BUDAP C, V16, P173
[10]  
GAT G, 1994, ANN U SCI BUDAPEST, V14, P61