Tangency property and prior-saturation points in planar minimal time problems

被引:0
作者
Bayen, Terence [1 ]
Cots, Olivier [2 ,3 ]
机构
[1] Univ Avignon, Lab Math Avignon EA 2151, F-84018 Avignon, France
[2] Toulouse Univ, INP ENSEEIHT, IRIT, 2 Rue Camichel, F-31071 Toulouse, France
[3] Toulouse Univ, INP ENSEEIHT, CNRS, 2 Rue Camichel, F-31071 Toulouse, France
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Geometric optimal control; Minimum time problems; Singular arcs; CONTRAST IMAGING PROBLEM;
D O I
10.1016/j.ifacol.2020.12.349
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we address properties of the minimal time synthesis for control-affine-systems in the plane involving a saturation point for the singular control. First, we provide sufficient conditions on the data ensuring occurence of a prior-saturation point. Then, we show that the bridge (i. e., the optimal bang arc issued from the singular locus at this point) is tangent to the switching curve at the prior-saturation point. We illustrate these results on a fed-batch model in bioprocesses. Copyright (C) 2020 The Authors.
引用
收藏
页码:6887 / 6892
页数:6
相关论文
共 2 条