On the Lp index of spin Dirac operators on conical manifolds

被引:1
|
作者
Legrand, Andre
Moroianu, Sergiu
机构
[1] Univ Toulouse 3, F-31062 Toulouse, France
[2] Acad Romane, Inst Matemat, RO-014700 Bucharest, Romania
关键词
Dirac operator; spin conical manifold; index theorem; eta invariant;
D O I
10.4064/sm177-2-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the index of the Dirac operator on a spin Riemannian manifold with conical singularities, acting from L-p(Sigma(+)) to L-q(Sigma(-)) with p, q > 1. When 1 + n/p - n/q > 0 we obtain the usual Atiyah-Patodi-Singer formula, but with a spectral cut at (n + 1)/2 - n/q instead of 0 in the definition of the eta invariant. In particular we reprove Chou's formula for the L-2 index. For 1 + n/p - n/q <= 0 the index formula contains an extra term related to the Calderon projector.
引用
收藏
页码:97 / 112
页数:16
相关论文
共 50 条