Fast Sub-exponential Algorithms and Compactness in Planar Graphs

被引:0
|
作者
Thilikos, Dimitrios M. [1 ]
机构
[1] Univ Athens, Dept Math, Athens 15784, Greece
来源
ALGORITHMS - ESA 2011 | 2011年 / 6942卷
关键词
Parameterized Algorithms; Branchwidth; Planar Graphs; FIXED-PARAMETER ALGORITHMS; BIDIMENSIONALITY; BOUNDS; SET;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We provide a new theory, alternative to bidimensionality, of sub-exponential parameterized algorithms on planar graphs, which is based on the notion of compactness. Roughly speaking, a parameterized problem is (r, q)-compact when all the faces and vertices of its YES-instances are "r-radially dominated" by some vertex set whose size is at most q times the parameter. We prove that if a parameterized problem can be solved in c(branchwidth(G)) n(O(1)) steps and is (r, q)-compact, then it can be solved by a c(r.2.122.root q.k) n(O(1)) step algorithm (where k is the parameter). Our framework is general enough to unify the analysis of almost all known sub-exponential parameterized algorithms on planar graphs and improves or matches their running times. Our results are based on an improved combinatorial bound on the branchwidth of planar graphs that bypasses the grid-minor exclusion theorem. That way, our approach encompasses new problems where bidimensionality theory do not directly provide sub-exponential parameterized algorithms.
引用
收藏
页码:358 / 369
页数:12
相关论文
共 50 条
  • [1] PLANAR MAPS OF SUB-EXPONENTIAL DISTORTION
    Gill, James T.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2010, 35 (01) : 197 - 207
  • [2] Upper Dominating Set: Tight algorithms for pathwidth and sub-exponential approximation
    Dublois, Louis
    Lampis, Michael
    Paschos, Vangelis Th
    THEORETICAL COMPUTER SCIENCE, 2022, 923 : 271 - 291
  • [3] On the exclusion of exponential autocatalysts by sub-exponential autocatalysts
    Sakref, Yann
    Rivoire, Olivier
    JOURNAL OF THEORETICAL BIOLOGY, 2024, 579
  • [4] Norms of sub-exponential random vectors
    Zajkowski, Krzysztof
    STATISTICS & PROBABILITY LETTERS, 2019, 152 : 147 - 152
  • [5] SUB-EXPONENTIAL CLASS OF PROBABILITY DISTRIBUTIONS
    TEUGELS, JL
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1974, 19 (04): : 854 - 855
  • [6] Hypocoercivity and sub-exponential local equilibria
    E. Bouin
    J. Dolbeault
    L. Lafleche
    C. Schmeiser
    Monatshefte für Mathematik, 2021, 194 : 41 - 65
  • [7] Exponential and sub-exponential stability times for the NLS on the circle
    Biasco, Luca
    Massetti, Jessica Elisa
    Procesi, Michela
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2019, 30 (02) : 351 - 364
  • [8] Sub-exponential stability for the beam equation
    Feola, Roberto
    Massetti, Jessica Elisa
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 356 : 188 - 242
  • [9] Breaking the Sub-Exponential Barrier in Obfustopia
    Garg, Sanjam
    Pandey, Omkant
    Srinivasan, Akshayaram
    Zhandry, Mark
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2017, PT III, 2017, 10212 : 156 - 181
  • [10] Hypocoercivity and sub-exponential local equilibria
    Bouin, E.
    Dolbeault, J.
    Lafleche, L.
    Schmeiser, C.
    MONATSHEFTE FUR MATHEMATIK, 2021, 194 (01): : 41 - 65