A kernel-based identification approach for a class of nonlinear systems with quantized output data

被引:8
|
作者
Ding, Jiling [1 ,2 ]
Zhang, Weihai [1 ]
Zhao, Junsheng [3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Elect Engn & Automation, Qingdao 266590, Peoples R China
[2] Jining Univ, Coll Math & Comp Applicat Technol, Jining 273155, Peoples R China
[3] Liaocheng Univ, Sch Math Sci, Liaocheng 252059, Peoples R China
基金
中国国家自然科学基金;
关键词
System identification; Nonlinear systems; Kernel-based method; Quantized data; Expectation maximization; MAXIMUM-LIKELIHOOD-ESTIMATION; PARAMETER-ESTIMATION; FIR SYSTEMS; ALGORITHMS; DESIGN; MODELS; NOISE; POINT;
D O I
10.1016/j.dsp.2022.103595
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider the problem of identification for a class of nonlinear systems with Hammerstein structure, which is a combination of some basis functions for the static nonlinearity and finite impulse response models for the linear block under quantized output data. Following the empirical Bayes method, we model the impulse response of the system using a Gaussian process whose covariance matrix depends on some suitable kernels. Then, we compute the minimum mean-square error estimation of the impulse response via a special case of Markov Chain Monte Carlo sampling approach, namely, Gibbs sampler. The estimation of the impulse response depends on the kernel hyperparameters, the noise variance and the coefficients of the static nonlinearity. These unknowns are estimated by the marginal likelihood maximization, which is solved via the expectation-conditional maximization algorithm combining the Gibbs sampler. The expectation-conditional maximization method is a variation of the standard expectation-maximization method for solving maximum-likelihood problems. Numerical simulations show the effectiveness of the proposed scheme. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A new kernel-based approach to system identification with quantized output data
    Bottegal, Giulio
    Hjalmarsson, Hakan
    Pillonetto, Gianluigi
    AUTOMATICA, 2017, 85 : 145 - 152
  • [2] Nonlinear Hybrid Systems Identification using Kernel-Based Techniques
    Scampicchio, Anna
    Giaretta, Alberto
    Pillonetto, Gianluigi
    IFAC PAPERSONLINE, 2018, 51 (15): : 269 - 274
  • [3] Kernel-based identification using Lebesgue-sampled data
    Gonzalez, Rodrigo A.
    Tiels, Koen
    Oomen, Tom
    AUTOMATICA, 2024, 164
  • [4] A nonparametric kernel-based approach to Hammerstein system identification
    Risuleo, Riccardo Sven
    Bottegal, Giulio
    Hjalmarsson, Hakan
    AUTOMATICA, 2017, 85 : 234 - 247
  • [5] A Kernel-Based Identification Approach to LPV Feedforward: With Application to Motion Systems
    van Haren, M.
    Blanken, L.
    Oomen, T.
    IFAC PAPERSONLINE, 2023, 56 (02): : 6063 - 6068
  • [6] Kernel-based system identification from noisy and incomplete input-output data
    Risuleo, Riccardo S.
    Bottegal, Giulio
    Hjalmarsson, Hakan
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 2061 - 2066
  • [7] Kernel-based identification of Wiener-Hammerstein system
    Mzyk, Grzegorz
    Wachel, Pawel
    AUTOMATICA, 2017, 83 : 275 - 281
  • [8] On identification of FIR systems having quantized output data
    Godoy, Boris I.
    Goodwin, Graham C.
    Agueero, Juan C.
    Marelli, Damian
    Wigren, Torbjorn
    AUTOMATICA, 2011, 47 (09) : 1905 - 1915
  • [9] A new kernel-based approach for linear system identification
    Pillonetto, Gianluigi
    De Nicolao, Giuseppe
    AUTOMATICA, 2010, 46 (01) : 81 - 93
  • [10] EM-based identification of ARX systems having quantized output data
    Aguero, Juan C.
    Gonzalez, Karen
    Carvajal, Rodrigo
    IFAC PAPERSONLINE, 2017, 50 (01): : 8367 - 8372