Annotating the Insect Regulatory Genome

被引:6
作者
Asma, Hasiba [1 ]
Halfon, Marc S. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Buffalo State Univ New York, Program Genet Genom & Bioinformat, Buffalo, NY 14203 USA
[2] Univ Buffalo State Univ New York, Dept Biochem, Buffalo, NY 14203 USA
[3] Univ Buffalo State Univ New York, Dept Biomed Informat, Buffalo, NY 14203 USA
[4] Univ Buffalo State Univ New York, Dept Biol Sci, Buffalo, NY 14203 USA
[5] NY State Ctr Excellence Bioinformat & Life Sci, Buffalo, NY 14203 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
arthropod; genomics; enhancer; cis-regulation; genome annotation; CHROMATIN ACCESSIBILITY; DEVELOPMENTAL ENHANCERS; DROSOPHILA; ELEMENTS; EVOLUTION; DNA; DISCOVERY; EXPRESSION; MODULES; QUANTIFICATION;
D O I
10.3390/insects12070591
中图分类号
Q96 [昆虫学];
学科分类号
摘要
Simple Summary Insects comprise the largest and most diverse class of animals on earth, and have major impacts on human health and agriculture. The effort to better understand insect biology has led to the sequencing of hundreds of insect genomes. However, the usefulness of having a genome sequence is limited in the absence of a comprehensive annotation-a description of the function of each part of the sequence. Functional parts of the genome include not only genes, but also regulatory sequences that mediate gene expression. We discuss here methods used to identify regulatory sequences within the genome, with the emphasis on a pair of tools we have developed, REDfly and SCRMshaw, that can be used in tandem to carry out this task in an efficient and economical manner. An ever-growing number of insect genomes is being sequenced across the evolutionary spectrum. Comprehensive annotation of not only genes but also regulatory regions is critical for reaping the full benefits of this sequencing. Driven by developments in sequencing technologies and in both empirical and computational discovery strategies, the past few decades have witnessed dramatic progress in our ability to identify cis-regulatory modules (CRMs), sequences such as enhancers that play a major role in regulating transcription. Nevertheless, providing a timely and comprehensive regulatory annotation of newly sequenced insect genomes is an ongoing challenge. We review here the methods being used to identify CRMs in both model and non-model insect species, and focus on two tools that we have developed, REDfly and SCRMshaw. These resources can be paired together in a powerful combination to facilitate insect regulatory annotation over a broad range of species, with an accuracy equal to or better than that of other state-of-the-art methods.
引用
收藏
页数:18
相关论文
共 127 条
[1]   FANTOM enters 20th year: expansion of transcriptomic atlases and functional annotation of non-coding RNAs [J].
Abugessaisa, Imad ;
Ramilowski, Jordan A. ;
Lizio, Marina ;
Severin, Jesicca ;
Hasegawa, Akira ;
Harshbarger, Jayson ;
Kondo, Atsushi ;
Noguchi, Shuhei ;
Yip, Chi Wai ;
Ooi, Jasmine Li Ching ;
Tagami, Michihira ;
Hori, Fumi ;
Agrawal, Saumya ;
Hon, Chung Chau ;
Cardon, Melissa ;
Ikeda, Shuya ;
Ono, Hiromasa ;
Bono, Hidemasa ;
Kato, Masaki ;
Hashimoto, Kosuke ;
Bonetti, Alessandro ;
Kobayashi, Norio ;
Shin, Jay ;
de Hoon, Michiel ;
Hayashizakil, Yoshihide ;
Carninci, Piero ;
Kawaji, Hideya ;
Kasukawa, Takeya .
NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) :D892-D898
[2]   Fine-Tuning Enhancer Models to Predict Transcriptional Targets across Multiple Genomes [J].
Aerts, Stein ;
van Helden, Jacques ;
Sand, Olivier ;
Hassan, Bassem A. .
PLOS ONE, 2007, 2 (11)
[3]   Exploiting regulatory heterogeneity to systematically identify enhancers with high accuracy [J].
Arbel, Hamutal ;
Basu, Sumanta ;
Fisher, William W. ;
Hammonds, Ann S. ;
Wan, Kenneth H. ;
Park, Soo ;
Weiszmann, Richard ;
Booth, Benjamin W. ;
Keranen, Soile, V ;
Henriquez, Clara ;
Solari, Omid Shams ;
Bickel, Peter J. ;
Biggin, Mark D. ;
Celniker, Susan E. ;
Brown, James B. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (03) :900-908
[4]   Genome-Wide Quantitative Enhancer Activity Maps Identified by STARR-seq [J].
Arnold, Cosmas D. ;
Gerlach, Daniel ;
Stelzer, Christoph ;
Boryn, Lukasz M. ;
Rath, Martina ;
Stark, Alexander .
SCIENCE, 2013, 339 (6123) :1074-1077
[5]   An alignment-free method to identify candidate orthologous enhancers in multiple Drosophila genomes [J].
Arunachalam, Manonmani ;
Jayasurya, Karthik ;
Tomancak, Pavel ;
Ohler, Uwe .
BIOINFORMATICS, 2010, 26 (17) :2109-2115
[6]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[7]   Computational enhancer prediction: evaluation and improvements [J].
Asma, Hasiba ;
Halfon, Marc S. .
BMC BIOINFORMATICS, 2019, 20 (1)
[8]   Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation [J].
Baek, Seungbyn ;
Lee, Insuk .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 :1429-1439
[9]   Regulation of chromatin by histone modifications [J].
Bannister, Andrew J. ;
Kouzarides, Tony .
CELL RESEARCH, 2011, 21 (03) :381-395
[10]   Determinants and dynamics of genome accessibility [J].
Bell, Oliver ;
Tiwari, Vijay K. ;
Thomae, Nicolas H. ;
Schuebeler, Dirk .
NATURE REVIEWS GENETICS, 2011, 12 (08) :554-564