RETRACTED: A 10 per cent increase in global land evapotranspiration from 2003 to 2019 (Retracted Article)

被引:154
作者
Pascolini-Campbell, Madeleine [1 ]
Reager, John T. [1 ]
Chandanpurkar, Hrishikesh A. [1 ]
Rodell, Matthew [2 ]
机构
[1] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
关键词
PRECIPITATION; SATELLITE; CYCLE; UNCERTAINTY; TEMPERATURE; DISCHARGE; TRENDS; VARIABILITY; CARBON; RATES;
D O I
10.1038/s41586-021-03503-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate quantification of global land evapotranspiration is necessary for understanding variability in the global water cycle, which is expected to intensify under climate change(1-3). Current global evapotranspiration products are derived from a variety of sources, including models(4,5), remote sensing(6,7) and in situ observations(8-10). However, existing approaches contain extensive uncertainties; for example, relating to model structure or the upscaling of observations to a global level(11). As a result, variability and trends in global evapotranspiration remain unclear(12). Here we show that global land evapotranspiration increased by 10 2 per cent between 2003 and 2019, and that land precipitation is increasingly partitioned into evapotranspiration rather than runoff. Our results are based on an independent water-balance ensemble time series of global land evapotranspiration and the corresponding uncertainty distribution, using data from the Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO) satellites(13). Variability in global land evapotranspiration is positively correlated with El Nino-Southern Oscillation. The main driver of the trend, however, is increasing land temperature. Our findings provide an observational constraint on global land evapotranspiration, and are consistent with the hypothesis that global evapotranspiration should increase in a warming climate. Using a global mass-balance approach to calculate evapotranspiration, it is shown that global land evapotranspiration increased by 10% between 2003 and 2019, driven mainly by warming land temperatures.
引用
收藏
页码:543 / +
页数:18
相关论文
共 64 条
[1]   The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation [J].
Adler, Robert F. ;
Sapiano, Mathew R. P. ;
Huffman, George J. ;
Wang, Jian-Jian ;
Gu, Guojun ;
Bolvin, David ;
Chiu, Long ;
Schneider, Udo ;
Becker, Andreas ;
Nelkin, Eric ;
Xie, Pingping ;
Ferraro, Ralph ;
Shin, Dong-Bin .
ATMOSPHERE, 2018, 9 (04)
[2]   Advances in understanding large-scale responses of the water cycle to climate change [J].
Allan, Richard P. ;
Barlow, Mathew ;
Byrne, Michael P. ;
Cherchi, Annalisa ;
Douville, Herve ;
Fowler, Hayley J. ;
Gan, Thian Y. ;
Pendergrass, Angeline G. ;
Rosenfeld, Daniel ;
Swann, Abigail L. S. ;
Wilcox, Laura J. ;
Zolina, Olga .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2020, 1472 (01) :49-75
[3]   Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources [J].
Anderson, Martha C. ;
Allen, Richard G. ;
Morse, Anthony ;
Kustas, William P. .
REMOTE SENSING OF ENVIRONMENT, 2012, 122 :50-65
[4]   Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future [J].
Baldocchi, DD .
GLOBAL CHANGE BIOLOGY, 2003, 9 (04) :479-492
[5]   Land Ice Freshwater Budget of the Arctic and North Atlantic Oceans: 1. Data, Methods, and Results [J].
Bamber, J. L. ;
Tedstone, A. J. ;
King, M. D. ;
Howat, I. M. ;
Enderlin, E. M. ;
van den Broeke, M. R. ;
Noel, B. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2018, 123 (03) :1827-1837
[6]   A methodology for evaluating evapotranspiration estimates at the watershed-scale using GRACE [J].
Billah, Mirza M. ;
Goodall, Jonathan L. ;
Narayan, Ujjwal ;
Reager, J. T. ;
Lakshmi, Venkat ;
Famiglietti, James S. .
JOURNAL OF HYDROLOGY, 2015, 523 :574-586
[7]  
Chandanpurkar HA, 2017, J CLIMATE, V30, P8481, DOI [10.1175/JCLI-D-16-0708.1, 10.1175/jcli-d-16-0708.1]
[8]  
Cleugh HA, 2007, REMOTE SENS ENVIRON, V106, P285, DOI [10.1016/j.rse.2006.07.007, 10.1016/j.rse.2007.04.015]
[9]   Changes in Continental Freshwater Discharge from 1948 to 2004 [J].
Dai, Aiguo ;
Qian, Taotao ;
Trenberth, Kevin E. ;
Milliman, John D. .
JOURNAL OF CLIMATE, 2009, 22 (10) :2773-2792
[10]   Calving fluxes and basal melt rates of Antarctic ice shelves [J].
Depoorter, M. A. ;
Bamber, J. L. ;
Griggs, J. A. ;
Lenaerts, J. T. M. ;
Ligtenberg, S. R. M. ;
van den Broeke, M. R. ;
Moholdt, G. .
NATURE, 2013, 502 (7469) :89-+