Progress in bacterial cellulose matrices for biotechnological applications

被引:220
作者
Cacicedo, Maximiliano L. [1 ]
Castro, M. Cristina [2 ]
Servetas, Ioannis [3 ]
Bosnea, Loulouda [3 ]
Boura, Konstantina [3 ]
Tsafrakidou, Panagiota [3 ]
Dima, Agapi [3 ]
Terpou, Antonia [3 ]
Koutinas, Athanasios [3 ]
Castro, Guillermo R. [1 ]
机构
[1] Univ Nacl La Plata, Dept Chem, Appl Biotechnol Inst,Sch Sci, Nanobiomat Lab,UNLP CONICET CCT La Plata,CINDEFI, RA-1900 Ajl Ciudad De La Plata, Provincia De Bu, Argentina
[2] Univ Pontificia Bolivariana, Sch Engn, Circular 1 70-01, Medellin, Colombia
[3] Univ Patras, Dept Chem, Food Biotechnol Grp, Patras 26500, Greece
关键词
Bacterial cellulose; Biocatalysis; Biocomposites; Bioprocessing; Fermentation; DIFFERENT CARBON-SOURCES; ACETOBACTER-XYLINUM; GLUCONACETOBACTER-XYLINUS; STATIC CULTURES; COMPOSITES; STRAIN; WASTE; FOOD; MICROPARTICLES; NANOCOMPOSITES;
D O I
10.1016/j.biortech.2016.02.071
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Bacterial cellulose (BC) is an extracellular polymer produced by many microorganisms. The Komagataeibacter genus is the best producer using semi-synthetic media and agricultural wastes. The main advantages of BC are the nanoporous structure, high water content and free hydroxyl groups. Modification of BC can be made by two strategies: in-situ, during the BC production, and ex-situ after BC purification. In bioprocesses, multilayer BC nanocomposites can contain biocatalysts designed to be suitable for outside to inside cell activities. These nanocomposites biocatalysts can (i) increase productivity in bioreactors and bioprocessing, (ii) provide cell activities does not possess without DNA cloning and (iii) provide novel nano-carriers for cell inside activity and bioprocessing. In nanomedicine, BC matrices containing therapeutic molecules can be used for pathologies like skin burns, and implantable therapeutic devices. In nanoelectronics, semiconductors BC-based using salts and synthetic polymers brings novel films showing excellent optical and photochemical properties. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:172 / 180
页数:9
相关论文
共 76 条
[1]  
Almeida D.M., 2008, REV BRAS TECHNOL AGR, V2, P95
[2]  
Atwa N., 2015, EGYPT PHARM J, V142, P123
[3]   Observations on bacterial cellulose tube formation for application as vascular graft [J].
Backdahl, Henrik ;
Risberg, Bo ;
Gatenholm, Paul .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2011, 31 (01) :14-21
[4]  
Bae S, 2004, J BIOSCI BIOENG, V97, P33, DOI 10.1016/S1389-1723(04)70162-0
[5]   Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells [J].
Cacicedo, Maximiliano L. ;
Leon, Ignacio E. ;
Gonzalez, Jimena S. ;
Porto, Luismar M. ;
Alvarez, Vera A. ;
Castro, Guillermo R. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2016, 140 :421-429
[6]   Self-assembly of carrageenin-CaCO3 hybrid microparticles on bacterial cellulose films for doxorubicin sustained delivery [J].
Cacicedo, Maximiliano L. ;
Cesca, Karina ;
Bosio, Valeria E. ;
Porto, Luismar M. ;
Castro, Guillermo R. .
JOURNAL OF APPLIED BIOMEDICINE, 2015, 13 (03) :239-248
[7]   Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility [J].
Cai, Zhijiang ;
Kim, Jaehwan .
CELLULOSE, 2010, 17 (01) :83-91
[8]  
Cakar F., 2014, CARBOHYD POLYM, V106, P1
[9]   In-situ glyoxalization during biosynthesis of bacterial cellulose [J].
Castro, Cristina ;
Cordeiro, Nereida ;
Faria, Marisa ;
Zuluaga, Robin ;
Putaux, Jean-Luc ;
Filpponen, Ilari ;
Velez, Lina ;
Rojas, Orlando J. ;
Ganan, Piedad .
CARBOHYDRATE POLYMERS, 2015, 126 :32-39
[10]   Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus [J].
Castro, Cristina ;
Zuluaga, Robin ;
Alvarez, Catalina ;
Putaux, Jean-Luc ;
Caro, Gloria ;
Rojas, Orlando J. ;
Mondragon, Inaki ;
Ganan, Piedad .
CARBOHYDRATE POLYMERS, 2012, 89 (04) :1033-1037