Handling Negative Values for the Logarithmic Objective Function in Acoustic Laplace-Domain Full-Waveform Inversion Using Real Variables

被引:6
作者
Ha, Wansoo [1 ]
Shin, Changsoo [2 ]
机构
[1] Pukyong Natl Univ, Dept Energy Resources Engn, Busan 48513, South Korea
[2] Seoul Natl Univ, Dept Energy Resources Engn, Seoul 08826, South Korea
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 07期
关键词
Linear programming; Damping; Data models; Numerical models; Laplace equations; Optimization methods; Frequency-domain analysis; Full-waveform inversion; Laplace-domain; logarithmic objective function; MIGRATION VELOCITY ANALYSIS; OPTIMAL TRANSPORT; FIELD; FREQUENCY; MISFIT;
D O I
10.1109/TGRS.2020.3019510
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Laplace-domain waveform inversion is a full-waveform inversion method that recovers large-scale subsurface models. The inversion updates subsurface model parameters to minimize the differences between the modeled and the observed wavefields in the Laplace domain. The inversion results can be used as an accurate initial model for subsequent high-resolution waveform inversions. Pure Laplace-domain wavefields can be obtained by transforming the time-domain signals using the Laplace transform of real variables. The real Laplace transform is mathematically identical to the Fourier transform using the imaginary angular frequency; however, the Laplace transform using only real variables is computationally more efficient than that using complex variables. The Laplace-transformed wavefields are real-valued signals, and thus, it is natural to use real values in the Laplace-domain waveform inversions. However, the real logarithm function in the logarithmic objective function cannot handle negative values. Inversions using complex logarithms can solve this problem, but they demand more memory and computations than those required for inversions using real variables only. We suggest a simple method to overcome the negative-value problem for the real logarithm in the objective function. By taking the absolute values of the negative signals in the logarithmic objective function, we can obtain inversion results from inversions using real variables only that are equivalent to those from inversions using complex variables. We demonstrate the proposed method using the Society of Exploration Geophysicists (SEG)/European Associations of Geoscientists x0026; Engineers (EAGE) salt model and a field data set. The inversions using real variables only took less than 22x0025; of the time of the inversion using complex variables in the numerical examples.
引用
收藏
页码:6218 / 6224
页数:7
相关论文
共 38 条
[1]   VELOCITY ANALYSIS BY ITERATIVE PROFILE MIGRATION [J].
ALYAHYA, K .
GEOPHYSICS, 1989, 54 (06) :718-729
[2]  
Aminzadeh F., 1994, Lead. Edge, V13, P949, DOI [DOI 10.1190/1.1437054, 10.1190/1.1437054]
[3]  
[Anonymous], 2020, INTEL R MKL PARDISO, P1753
[4]   Laplace-domain waveform inversion versus refraction-traveltime tomography [J].
Bae, Ho Seuk ;
Pyun, Sukjoon ;
Shin, Changsoo ;
Marfurt, Kurt J. ;
Chung, Wookeen .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 190 (01) :595-606
[5]   Simultaneous inversion of full data bandwidth by tomographic full-waveform inversion [J].
Biondi, Biondo ;
Almomin, Ali .
GEOPHYSICS, 2014, 79 (03) :WA129-WA140
[6]  
Brenders AJ, 2007, GEOPHYS J INT, V168, P152, DOI [10.1111/j.1365-246X.2006.03096.x, 10.1111/j.1365-246X.2006.03096x]
[7]   MULTISCALE SEISMIC WAVE-FORM INVERSION [J].
BUNKS, C ;
SALECK, FM ;
ZALESKI, S ;
CHAVENT, G .
GEOPHYSICS, 1995, 60 (05) :1457-1473
[8]   Time-domain full-waveform inversion of exponentially damped wavefield using the deconvolution-based objective function [J].
Choi, Yunseok ;
Alkhalifah, Tariq .
GEOPHYSICS, 2018, 83 (02) :R77-R88
[9]   2D Elastic Waveform Inversion in the Laplace Domain [J].
Chung, Wookeen ;
Shin, Changsoo ;
Pyun, Sukjoon .
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2010, 100 (06) :3239-3249
[10]   OPTIMAL TRANSPORT FOR SEISMIC FULL WAVEFORM INVERSION [J].
Engquist, Bjorn ;
Froese, Brittany D. ;
Yang, Yunan .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (08) :2309-2330