Novel Plasmodium falciparum metabolic network reconstruction identifies shifts associated with clinical antimalarial resistance

被引:29
作者
Carey, Maureen A. [1 ]
Papin, Jason A. [2 ]
Guler, Jennifer L. [3 ,4 ]
机构
[1] Univ Virginia, Sch Med, Dept Microbiol Immunol & Canc Biol, Charlottesville, VA 22908 USA
[2] Univ Virginia, Dept Biomed Engn, Charlottesville, VA 22903 USA
[3] Univ Virginia, Dept Biol, Charlottesville, VA 22903 USA
[4] Univ Virginia, Sch Med, Div Infect Dis & Int Hlth, Charlottesville, VA 22908 USA
来源
BMC GENOMICS | 2017年 / 18卷
关键词
Plasmodium falciparum; Malaria; Metabolism; Network reconstruction; Artemisinin resistance; Flux balance analysis; MALARIA PARASITES; OXIDATIVE STRESS; SERINE HYDROXYMETHYLTRANSFERASE; NUTRITIONAL-REQUIREMENTS; PERMEABILITY PATHWAYS; ASEXUAL BLOOD; FUNCTIONAL GENOMICS; TOXOPLASMA-GONDII; MULTIPLE-TARGETS; ACID-METABOLISM;
D O I
10.1186/s12864-017-3905-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Malaria remains a major public health burden and resistance has emerged to every antimalarial on the market, including the frontline drug, artemisinin. Our limited understanding of Plasmodium biology hinders the elucidation of resistance mechanisms. In this regard, systems biology approaches can facilitate the integration of existing experimental knowledge and further understanding of these mechanisms. Results: Here, we developed a novel genome-scale metabolic network reconstruction, iPfal17, of the asexual blood-stage P. falciparum parasite to expand our understanding of metabolic changes that support resistance. We identified 11 metabolic tasks to evaluate iPfal17 performance. Flux balance analysis and simulation of gene knockouts and enzyme inhibition predict candidate drug targets unique to resistant parasites. Moreover, integration of clinical parasite transcriptomes into the iPfal17 reconstruction reveals patterns associated with antimalarial resistance. These results predict that artemisinin sensitive and resistant parasites differentially utilize scavenging and biosynthetic pathways for multiple essential metabolites, including folate and polyamines. Our findings are consistent with experimental literature, while generating novel hypotheses about artemisinin resistance and parasite biology. We detect evidence that resistant parasites maintain greater metabolic flexibility, perhaps representing an incomplete transition to the metabolic state most appropriate for nutrient-rich blood. Conclusion: Using this systems biology approach, we identify metabolic shifts that arise with or in support of the resistant phenotype. This perspective allows us to more productively analyze and interpret clinical expression data for the identification of candidate drug targets for the treatment of resistant parasites.
引用
收藏
页数:19
相关论文
共 128 条
[81]   Metabolic Network Analysis of Pseudomonas aeruginosa during Chronic Cystic Fibrosis Lung Infection [J].
Oberhardt, Matthew A. ;
Goldberg, Joanna B. ;
Hogardt, Michael ;
Papin, Jason A. .
JOURNAL OF BACTERIOLOGY, 2010, 192 (20) :5534-5548
[82]   Host-Parasite Interactions Revealed by Plasmodium falciparum Metabolomics [J].
Olszewski, Kellen L. ;
Morrisey, Joanne M. ;
Wilinski, Daniel ;
Burns, James M. ;
Vaidya, Akhil B. ;
Rabinowitz, Joshua D. ;
Linas, Manuel .
CELL HOST & MICROBE, 2009, 5 (02) :191-199
[83]   A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011 [J].
Orth, Jeffrey D. ;
Conrad, Tom M. ;
Na, Jessica ;
Lerman, Joshua A. ;
Nam, Hojung ;
Feist, Adam M. ;
Palsson, Bernhard O. .
MOLECULAR SYSTEMS BIOLOGY, 2011, 7
[84]   What is flux balance analysis? [J].
Orth, Jeffrey D. ;
Thiele, Ines ;
Palsson, Bernhard O. .
NATURE BIOTECHNOLOGY, 2010, 28 (03) :245-248
[85]   Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum [J].
Painter, Heather J. ;
Morrisey, Joanne M. ;
Mather, Michael W. ;
Vaidya, Akhil B. .
NATURE, 2007, 446 (7131) :88-91
[86]   Glutathione Reductase-null Malaria Parasites Have Normal Blood Stage Growth but Arrest during Development in the Mosquito [J].
Pastrana-Mena, Rebecca ;
Dinglasan, Rhoel R. ;
Franke-Fayard, Blandine ;
Vega-Rodriguez, Joel ;
Fuentes-Caraballo, Mariela ;
Baerga-Ortiz, Abel ;
Coppens, Isabelle ;
Jacobs-Lorena, Marcelo ;
Janse, Chris J. ;
Serrano, Adelfa E. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (35) :27045-27056
[87]   Dissecting the role of glutathione biosynthesis in Plasmodium falciparum [J].
Patzewitz, Eva-Maria ;
Wong, Eleanor H. ;
Mueller, Sylke .
MOLECULAR MICROBIOLOGY, 2012, 83 (02) :304-318
[88]   EVIDENCE THAT A POINT MUTATION IN DIHYDROFOLATE-REDUCTASE THYMIDYLATE SYNTHASE CONFERS RESISTANCE TO PYRIMETHAMINE IN FALCIPARUM-MALARIA [J].
PETERSON, DS ;
WALLIKER, D ;
WELLEMS, TE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (23) :9114-9118
[89]   In silico multiple-targets identification for heme detoxification in the human malaria parasite Plasmodium falciparum [J].
Phaiphinit, Suthat ;
Pattaradilokrat, Sittiporn ;
Lursinsap, Chidchanok ;
Plaimas, Kitipom .
INFECTION GENETICS AND EVOLUTION, 2016, 37 :237-244
[90]  
Phillips Margaret A., 2010, Infectious Disorders - Drug Targets, V10, P226