Boundary singularities of N-harmonic functions

被引:5
作者
Borghol, Rouba [1 ]
Veron, Laurent [1 ]
机构
[1] Univ Tours, Fac Sci, CNRS, Lab Math & Phys Theor,UMR 6083, F-37200 Tours, France
关键词
boundary Harnack inequalities; conformal transformations; Hopf boundary lemma; maximum principle; separable solutions; singularities;
D O I
10.1080/03605300600910415
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the behaviour near a boundary point a of a positive N-harmonic function u which vanishes on the boundary except at a. The conformal invariance of the equation plays a fundamental role in this description. By using spherical variables, we construct a new series of separable p-harmonic functions in IRN.
引用
收藏
页码:1001 / 1015
页数:15
相关论文
共 16 条
[1]  
[Anonymous], [No title captured]
[2]   Boundary Harnack inequality and a priori estimates of singular solutions of quasilinear elliptic equations [J].
Bidaut-Vernon, Marie-Francoise ;
Borghol, Rouba ;
Veron, Laurent .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 27 (02) :159-177
[3]  
BORGHOL R, 2005, THESIS U TOURS
[4]  
FRIEDMAN A, 1986, ARCH RATION MECH AN, V96, P359
[5]   SINGULAR SOLUTIONS OF THE P-LAPLACE EQUATION [J].
KICHENASSAMY, S ;
VERON, L .
MATHEMATISCHE ANNALEN, 1986, 275 (04) :599-615
[6]  
Krol' I., 1973, P STEKLOV I MATH, V125, P130
[7]  
LIBERMANN G, 1988, NONLINEAR ANAL, V12, P1203
[8]  
Resetnjak JG., 1967, SIBIRSK MAT, V8, P629
[9]   LOCAL BEHAVIOR OF SOLUTIONS OF QUASI-LINEAR EQUATIONS [J].
SERRIN, J .
ACTA MATHEMATICA, 1964, 111 (3-4) :247-302
[10]   Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities [J].
Serrin, J ;
Zou, HH .
ACTA MATHEMATICA, 2002, 189 (01) :79-142