Monopulse amplitude direction-finding using neuro-fuzzy approach

被引:6
作者
Bokshtein, E
Shmaltz, D
Herbst, O
Bunke, H
Kandel, A
机构
[1] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL 33620 USA
[2] Tel Aviv Univ, Dept Elect Engn Syst, IL-69978 Tel Aviv, Israel
[3] Univ Bern, Inst Informat & Angewandte Math, CH-3012 Bern, Switzerland
关键词
fuzzy sets; ANFIS; FIS; monopulse amplitude; direction finding;
D O I
10.1016/S0921-8890(00)00083-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A neuro-fuzzy approach for solving the monopulse amplitude direction-finding is proposed. A system comprised of an adaptive network based fuzzy inference system (ANFIS) implementation is simulated and compared to the classic solution of the problem. This comparison is done over a variety of antennas and gain situations, in which the system has to adjust to a change in its basic parameters. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 50 条
[41]   A Hybrid Adaptive Neuro-Fuzzy Inference System (ANFIS) Approach for Professional Bloggers Classification [J].
Asim, Yousra ;
Raza, Basit ;
Malik, Ahmad Kamran ;
Shahid, Ahmad R. ;
Faheem, Muhammad ;
Kumar, Yogan Jaya .
2019 22ND IEEE INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2019, :88-93
[42]   A modeling approach for iron concentration in sand filtration effluent using adaptive neuro-fuzzy model [J].
Cakmakci, Mehmet ;
Kinaci, Cumali ;
Bayramoglu, Mahmut ;
Yildirim, Yilmaz .
EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (02) :1369-1373
[43]   Heat transfer and fluid flow modeling in serpentine microtubes using adaptive neuro-fuzzy approach [J].
Beigzadeh, Reza ;
Hajialyani, Marziyeh ;
Rahimi, Masoud .
KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2016, 33 (05) :1534-1550
[44]   Fault detection and diagnosis of pneumatic valve using Adaptive Neuro-Fuzzy Inference System approach [J].
Subbaraj, P. ;
Kannapiran, B. .
APPLIED SOFT COMPUTING, 2014, 19 :362-371
[45]   Heat transfer and fluid flow modeling in serpentine microtubes using adaptive neuro-fuzzy approach [J].
Reza Beigzadeh ;
Marziyeh Hajialyani ;
Masoud Rahimi .
Korean Journal of Chemical Engineering, 2016, 33 :1534-1550
[46]   Modelling biochemical oxygen demand using improved neuro-fuzzy approach by marine predators algorithm [J].
Adnan, Rana Muhammad ;
Dai, Hong-Liang ;
Kisi, Ozgur ;
Heddam, Salim ;
Kim, Sungwon ;
Kulls, Christoph ;
Zounemat-Kermani, Mohammad .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (41) :94312-94333
[47]   Online affine model identification of nonlinear processes using a new adaptive neuro-fuzzy approach [J].
Salahshoor, Karim ;
Hamzehnejad, Morteza ;
Zakeri, Sepide .
APPLIED MATHEMATICAL MODELLING, 2012, 36 (11) :5534-5554
[48]   Forecasting the profit for the Greek non-metallic sector using a neuro-fuzzy approach (ANFIS) [J].
Ucenic, C. ;
Atsalakis, G. .
MANAGEMENT OF TECHNOLOGICAL CHANGES, BOOK 2, 2005, :125-130
[49]   Using ARIMA model and neuro-fuzzy approach to forecast the climatic temperature in Mosul-Iraq [J].
Fadhil, Naam Salem .
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01) :2911-2920
[50]   MODELLING AND FORECAST OF CHARCOAL PRICES USING A NEURO-FUZZY SYSTEM [J].
Araujo Junior, Carlos Alberto ;
da Silva, Liniker Fernandes ;
da Silva, Marcio Lopes ;
Leite, Helio Garcia ;
Valdetaro, Erlon Barbosa ;
Donato, Danilo Barros ;
Oliveira Castro, Renato Vinicius .
CERNE, 2016, 22 (02) :151-158