Sturm-Liouville Differential Equations Involving Kurzweil-Henstock Integrable Functions

被引:4
作者
Sanchez-Perales, Salvador [1 ]
Perez-Becerra, Tomas [2 ]
Vazquez-Hipolito, Virgilio [1 ]
Oliveros-Oliveros, Jose J. [3 ]
机构
[1] Univ Tecnol Mixteca, Inst Fis & Matemat, Km 2-5 Carretera Acatlima, Oaxaca 69000, Oaxaca, Mexico
[2] Univ Tecnol Mixteca, Div Estudios Postgrad, Km 2-5 Carretera Acatlima, Oaxaca 69000, Oaxaca, Mexico
[3] Benemerita Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Rio Verde & Av San Claudio, Puebla 72570, Mexico
关键词
Kurzweil-Henstock integral; KH-Sobolev space; Sturm-Liouville equation; finite element method;
D O I
10.3390/math9121403
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give sufficient conditions for the existence and uniqueness of the solution of Sturm-Liouville equations subject to Dirichlet boundary value conditions and involving Kurzweil-Henstock integrable functions on unbounded intervals. We also present a finite element method scheme for Kurzweil-Henstock integrable functions.
引用
收藏
页数:20
相关论文
共 15 条
[1]  
Bartle RG., 2001, A modern theory of integration
[2]   APPLICATIONS OF HENSTOCK-KURZWEIL INTEGRALS ON AN UNBOUNDED INTERVAL TO DIFFERENTIAL AND INTEGRAL EQUATIONS [J].
Borkowski, Marcin ;
Bugajewska, Daria .
MATHEMATICA SLOVACA, 2018, 68 (01) :77-88
[3]   Existence of periodic solutions and bifurcation points for generalized ordinary differential equations [J].
Federson, M. ;
Mawhin, J. ;
Mesquita, C. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 169
[4]  
Gordon R.A., 1994, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, V4
[5]  
Kurtz D.S., 2011, SERIES REAL ANAL, V13
[6]   Numerical Solution of Some Differential Equations with Henstock-Kurzweil Functions [J].
Leon-Velasco, D. A. ;
Morin-Castillo, M. M. ;
Oliveros-Oliveros, J. J. ;
Perez-Becerra, T. ;
Escamilla-Reyna, J. A. .
JOURNAL OF FUNCTION SPACES, 2019, 2019
[7]   Extremal solutions of systems of measure differential equations and applications in the study of Stieltjes differential problems [J].
Lopez Pouso, Rodrigo ;
Marquez Albes, Ignacio ;
Monteiro, Giselle A. .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (38) :1-24
[8]   RIEMANN-LIOUVILLE DERIVATIVE OVER THE SPACE OF INTEGRABLE DISTRIBUTIONS [J].
Morales, Maria Guadalupe ;
Dosla, Zuzana ;
Mendoza, Francisco J. .
ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02) :567-587
[9]   The HK-Sobolev space and applications to one-dimensional boundary value problems [J].
Perez-Becerra, T. ;
Sanchez-Perales, S. ;
Oliveros-Oliveros, J. J. .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2020, 32 (06) :2790-2796
[10]  
Sanchez-Perales S., 2012, INT J MATH MATH SCI, V2012, P11, DOI [10.1155/2012/209462, DOI 10.1155/2012/209462]