Sub-Second Time-Resolved Surface-Enhanced Raman Spectroscopy Reveals Dynamic CO Intermediates during Electrochemical CO2 Reduction on Copper

被引:204
作者
An, Hongyu [1 ]
Wu, Longfei [1 ]
Mandemaker, Laurens D. B. [1 ]
Yang, Shuang [1 ]
de Ruiter, Jim [1 ]
Wijten, Jochem H. J. [1 ]
Janssens, Joris C. L. [1 ]
Hartman, Thomas [1 ]
van der Stam, Ward [1 ]
Weckhuysen, Bert M. [1 ]
机构
[1] Univ Utrecht, Inst Sustainable & Circular Chem, Inorgan Chem & Catalysis, Univ Weg 99, NL-3584 CG Utrecht, Netherlands
关键词
copper; electrocatalysis; in situ; Raman spectroscopy; CARBON-DIOXIDE; CU ELECTRODES; CATALYSTS; ELECTROREDUCTION; SELECTIVITY; ELECTROLYSIS; MULTICARBON; MOLECULES; LAYER;
D O I
10.1002/anie.202104114
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrocatalytic carbon dioxide (CO2) reduction reaction (CO2RR) into hydrocarbons is a promising approach for greenhouse gas mitigation, but many details of this dynamic reaction remain elusive. Here, time-resolved surface-enhanced Raman spectroscopy (TR-SERS) is employed to successfully monitor the dynamics of CO2RR intermediates and Cu surfaces with sub-second time resolution. Anodic treatment at 1.55 V vs. RHE and subsequent surface oxide reduction (below -0.4 V vs. RHE) induced roughening of the Cu electrode surface, which resulted in hotspots for TR-SERS, enhanced time resolution (down to approximate to 0.7 s) and fourfold improved CO2RR efficiency toward ethylene. With TR-SERS, the initial restructuring of the Cu surface was followed (<7 s), after which a stable surface surrounded by increased local alkalinity was formed. Our measurements revealed that a highly dynamic CO intermediate, with a characteristic vibration below 2060 cm(-1), is related to C-C coupling and ethylene production (-0.9 V vs. RHE), whereas lower cathodic bias (-0.7 V vs. RHE) resulted in gaseous CO production from isolated and static CO surface species with a distinct vibration at 2092 cm(-1).
引用
收藏
页码:16576 / 16584
页数:9
相关论文
共 50 条
  • [21] Recent Developments in Copper-Based Catalysts for Enhanced Electrochemical CO2 Reduction
    Yesupatham, Manova Santhosh
    Honnappa, Brahmari
    Agamendran, Nithish
    Kumar, Sai Yeswanth
    Chellasamy, Gayathri
    Govindaraju, Saravanan
    Yun, Kyusik
    Selvam, N. Clament Sagaya
    Maruthapillai, Arthanareeswari
    Li, Wei
    Sekar, Karthikeyan
    ADVANCED SUSTAINABLE SYSTEMS, 2024, 8 (06)
  • [22] Electrochemical CO2 Reduction on Bimetallic Surface Alloys: Enhanced Selectivity to CO for Co/Au(110) and to H2 for Sn/Au(110)
    Todoroki, Naoto
    Tei, Hiroki
    Miyakawa, Taku
    Tsurumaki, Hiroto
    Wadayama, Toshimasa
    CHEMELECTROCHEM, 2019, 6 (12) : 3101 - 3107
  • [23] Electrochemical reduction of CO2 on activated copper: Influence of surface area
    Girl, Sachin D.
    Mahajani, Sanjay M.
    Suresh, A. K.
    Sarkar, A.
    MATERIALS RESEARCH BULLETIN, 2020, 123
  • [24] New aspects of operando Raman spectroscopy applied to electrochemical CO2 reduction on Cu foams
    Jiang, Shan
    Klingan, Katharina
    Pasquini, Chiara
    Dau, Holger
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (04)
  • [25] Examination of Near-Electrode Concentration Gradients and Kinetic Impacts on the Electrochemical Reduction of CO2 using Surface-Enhanced Infrared Spectroscopy
    Dunwell, Marco
    Yang, Xuan
    Setzler, Brian P.
    Anibal, Jacob
    Yan, Yushan
    Xu, Bingjun
    ACS CATALYSIS, 2018, 8 (05): : 3999 - 4008
  • [26] Selectivity Control for Electrochemical CO2 Reduction by Charge Redistribution on the Surface of Copper Alloys
    Vasileff, Anthony
    Zhi, Xing
    Xu, Chaochen
    Ge, Lei
    Jiao, Yan
    Zheng, Yao
    Qiao, Shi-Zhang
    ACS CATALYSIS, 2019, 9 (10) : 9411 - 9417
  • [27] Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO2 Reduction
    Koh, Ezra S.
    Geiger, Simon
    Gunnarson, Alexander
    Imhof, Timo
    Meyer, Gregor M.
    Paciok, Paul
    Etzold, Bastian J. M.
    Rose, Marcus
    Schueth, Ferdi
    Ledendecker, Marc
    CHEMELECTROCHEM, 2023, 10 (05)
  • [28] Surfactant-driven interfacial engineering of copper surfaces for enhanced electrochemical CO2 reduction
    Pandiarajan, Aarthi
    Hemalatha, Gurusamy
    Mahalakshmi, Babu
    Ravichandran, Subbiah
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2025, 978
  • [29] Boosting Surface Coverage of CO Intermediates through Multimetallic Interface Interactions for Efficient CO2 Electrochemical Reduction
    Babu, Ann Mariella
    Gandhi, Mansi
    Amreen, Khairunnisa
    Varghese, Anitha
    LANGMUIR, 2025, 41 (05) : 3053 - 3065
  • [30] An In Situ Surface-Enhanced Infrared Absorption Spectroscopy Study of Electrochemical CO2 Reduction: Selectivity Dependence on Surface C-Bound and O-Bound Reaction Intermediates
    Katayama, Yu
    Nattino, Francesco
    Giordano, Livia
    Hwang, Jonathan
    Rao, Reshma R.
    Andreussi, Oliviero
    Marzari, Nicola
    Shao-Horn, Yang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (10) : 5951 - 5963