Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater

被引:89
|
作者
Li, Y. W.
Wang, R. Z. [1 ]
Wu, J. Y.
Xu, Y. X.
机构
[1] Shanghai Jiao Tong Univ, Inst Refrigerat & Cryogen, Shanghai 200240, Peoples R China
[2] MOE, Engn Res Ctr Solar Power & Refrigerat, Shanghai 200240, Peoples R China
关键词
heat pump; water heater; coefficient of performance; solar collector efficiency; exergy;
D O I
10.1016/j.energy.2006.11.003
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, a direct expansion solar-assisted heat pump water heater (DX-SAHPWH) with rated input power 750 W was tested and analyzed. Through experimental research in spring and thermodynamics analysis about the system performance, some suggestions for the system optimization are proposed. Then, a small-type DX-SAHPWH with rated input power 400 W was built, tested and analyzed. Through exergy analysis for each component of DX-SAHPWH (A) and (B), it can be seen that the highest exergy loss occurs in the compressor and collector/evaporator, followed by the condenser and expansion valve, respectively. Furthermore, some methods are suggested to improve the performance of each component, especially the collector/evaporator. A methodology for the design optimization of the collector/evaporator was introduced and applied. In order to maintain a proper matching between the heat pumping capacity of the compressor and the evaporative capacity of the collector/evaporator under widely varying ambient conditions, the electronic expansion valve and variable frequency compressor are suggested to be utilized for the DX-SAHPWH. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1361 / 1374
页数:14
相关论文
共 50 条
  • [21] Experimental performance analysis of evacuated tube type direct-expansion solar-assisted heat pump system
    Yu, Xiaohui
    Jiang, Sensen
    Gao, Zhi
    Yang, Bin
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2024, 21 (08) : 1886 - 1896
  • [22] Theoretical analysis of thermal performance of a direct-expansion solar-assisted heat pump water heating system
    Kuang, YH
    Wang, RZ
    CRYOGENICS AND REFRIGERATION - PROCEEDINGS OF ICCR'2003, 2003, : 686 - 690
  • [23] Exergy Analysis of Direct-Expansion Solar-Assisted Heat Pump Based on Experimental Data
    Kong X.
    Cui F.
    Li J.
    Zhang M.
    Kong, Xiangqiang (xqkong@sdust.edu.cn), 1600, Shanghai Jiaotong University (26): : 138 - 145
  • [24] Influence of subcooling on performance of direct-expansion solar-assisted heat pump
    Wang, Baigong
    Kong, Xiangqiang
    Yan, Xunzheng
    Shang, Yanping
    Li, Ying
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2021, 122 : 201 - 209
  • [25] Thermal performance of a variable capacity direct expansion solar-assisted heat pump
    Chaturvedi, SK
    Chen, DT
    Kheireddine, A
    ENERGY CONVERSION AND MANAGEMENT, 1998, 39 (3-4) : 181 - 191
  • [26] Modeling evaluation of a direct-expansion solar-assisted heat pump water heater using R410A
    Kong, X. Q.
    Li, Y.
    Lin, L.
    Yang, Y. G.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2017, 76 : 136 - 146
  • [27] PERFORMANCE ANALYSIS OF EVACUATED TUBE DIRECT-EXPANSION SOLAR-ASSISTED HEAT PUMP SYSTEMS
    Yu X.
    Wang T.
    Gao Z.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (11): : 166 - 173
  • [28] Performance comparison of direct expansion solar-assisted heat pump and conventional air source heat pump for domestic hot water
    Sun, Xiaolin
    Dai, Yanjun
    Novakovic, V.
    Wu, J.
    Wang, Ruzhu
    INTERNATIONAL CONFERENCE ON SOLAR HEATING AND COOLING FOR BUILDINGS AND INDUSTRY, SHC 2014, 2015, 70 : 394 - 401
  • [29] Heat-pipe enhanced solar-assisted heat pump water heater
    Huang, BJ
    Lee, JP
    Chyng, JP
    SOLAR ENERGY, 2005, 78 (03) : 375 - 381
  • [30] Performance of a direct-expansion solar-assisted heat pump for domestic hot water production in Algeria
    Benchamma, Sofiane
    Missoum, Mohammed
    Belkacem, Nefissa
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED, 2024, 13 (04): : 572 - 580