Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures

被引:168
作者
Incandela, Rosario M. [1 ,2 ,3 ]
Song, Lin [4 ,9 ]
Homulle, Harald [1 ,2 ,3 ]
Charbon, Edoardo [3 ,5 ,6 ]
Vladimirescu, Andrei [7 ,8 ]
Sebastiano, Fabio [1 ,2 ,9 ]
机构
[1] Delft Univ Technol, Dept Quantum & Comp Engn, NL-2628 Delft, Netherlands
[2] QuTech, NL-2628 Delft, Netherlands
[3] Kavli Inst Nanosci, NL-2628 Delft, Netherlands
[4] Analog Devices Inc, Beijing 100192, Peoples R China
[5] Ecole Polytech Fed Lausanne, Adv Quantum Architectures Lab, CH-1015 Lausanne, Switzerland
[6] Intel Corp, Hillsboro, OR 97124 USA
[7] Univ Calif Berkeley, Berkeley Wireless Res Ctr, Berkeley, CA 94708 USA
[8] Inst Super Elect Paris, Micronano Elect & Radio Commun, F-75006 Paris, France
[9] Delft Univ Technol, Dept Microelect, NL-2628 Delft, Netherlands
来源
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY | 2018年 / 6卷 / 01期
关键词
Cryogenic electronics; CMOS; cryogenic; cryo-CMOS; characterization; modeling; kink; 4; K; LNA; OXIDE-SEMICONDUCTOR TRANSISTORS; THRESHOLD VOLTAGE; MOS-TRANSISTORS; LIQUID-NITROGEN; BEHAVIOR; NOISE; KINK; HYSTERESIS; INTERFACE; FREQUENCY;
D O I
10.1109/JEDS.2018.2821763
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cryogenic characterization and modeling of two nanometer bulk CMOS technologies (0.16-mu m and 40-nm) are presented in this paper. Several devices from both technologies were extensively characterized at temperatures of 4 K and below. Based on a detailed understanding of the device physics at deep-cryogenic temperatures, a compact model based on MOS11 and PSP was developed. In addition to reproducing the device dc characteristics, the accuracy and validity of the compact models are demonstrated by comparing time- and frequency-domain simulations of complex circuits, such as a ring oscillator and a low-noise amplifier, with the measurements at 4 K.
引用
收藏
页码:996 / 1006
页数:11
相关论文
共 52 条
[1]   Compact and Distributed Modeling of Cryogenic Bulk MOSFET Operation [J].
Akturk, A. ;
Holloway, M. ;
Potbhare, S. ;
Gundlach, D. ;
Li, B. ;
Goldsman, N. ;
Peckerar, M. ;
Cheung, K. P. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (06) :1334-1342
[2]  
Akturk A., 2009, 2009 INT C SIM SEM P, P1, DOI DOI 10.1109/SISPAD.2009.5290227
[3]   Cryogenic transimpedance amplifier for micromechanical capacitive sensors [J].
Antonio, D. ;
Pastoriza, H. ;
Julian, P. ;
Mandoles, P. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (08)
[4]   BRIEF REVIEW OF THE MOS DEVICE PHYSICS FOR LOW-TEMPERATURE ELECTRONICS [J].
BALESTRA, F ;
GHIBAUDO, G .
SOLID-STATE ELECTRONICS, 1994, 37 (12) :1967-1975
[5]   INFLUENCE OF SUBSTRATE FREEZE-OUT ON THE CHARACTERISTICS OF MOS-TRANSISTORS AT VERY LOW-TEMPERATURES [J].
BALESTRA, F ;
AUDAIRE, L ;
LUCAS, C .
SOLID-STATE ELECTRONICS, 1987, 30 (03) :321-327
[6]   Cryogenic Characterization of 28 nm Bulk CMOS Technology for Quantum Computing [J].
Beckers, Arnout ;
Jazaeri, Farzan ;
Ruffino, Andrea ;
Bruschini, Claudio ;
Baschirotto, Andrea ;
Enz, Christian .
2017 47TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2017, :62-65
[7]   Wide-band CMOS low-noise amplifier exploiting thermal noise canceling [J].
Bruccoleri, F ;
Klumperink, EAM ;
Nauta, B .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2004, 39 (02) :275-282
[8]   CMOS reliability issues for emerging cryogenic Lunar electronics applications [J].
Chen, Tianbing ;
Zhu, Chendong ;
Najafizadeh, Laleh ;
Jun, Bongim ;
Ahmed, Adnan ;
Diestelhorst, Ryan ;
Espinel, Gustavo ;
Cressler, John D. .
SOLID-STATE ELECTRONICS, 2006, 50 (06) :959-963
[9]   Temperature dependences of threshold voltage and drain-induced barrier lowering in 60 nm gate length MOS transistors [J].
Chen, Zehua ;
Wong, Hei ;
Han, Yan ;
Dong, Shurong ;
Yang, B. L. .
MICROELECTRONICS RELIABILITY, 2014, 54 (6-7) :1109-1114
[10]  
Coskun A, 2014, IEEE INT SYMP CIRC S, P2001, DOI 10.1109/ISCAS.2014.6865556