Transient distribution of the length of GI/G/N queueing systems

被引:10
作者
Hou, ZT
Yuan, CG
Zou, JZ
Liu, ZM
Luo, JW
Liu, GX
Shi, P
机构
[1] Cent S Univ, Sch Math, Changsha 410075, Hunan, Peoples R China
[2] Def Sci & Technol Org, Land Operat Div, Edinburgh, SA, Australia
基金
中国国家自然科学基金;
关键词
Markov skeleton process (MSP); queueing system; (H; Q)-pair; backward equation;
D O I
10.1081/SAP-120020427
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first present the backward equations of Markov skeleton processes, which are then applied to GI/G/N queueing systems. Transient distribution of the length of GI/G/N queueing system is obtained.
引用
收藏
页码:567 / 592
页数:26
相关论文
共 13 条
[1]   Supplementary variable technique in stochastic models [J].
Alfa, AS ;
Rao, TSSS .
PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2000, 14 (02) :203-218
[2]  
Gross D., 1998, Fundamentals of queueing theory, V3
[3]  
HOU Z, 2000, MARKOV SKELETON PROC
[4]   QNQL processes - (H,Q)-processes and their applications [J].
Hou, ZT ;
Liu, ZM ;
Zou, JZ .
CHINESE SCIENCE BULLETIN, 1997, 42 (11) :881-886
[5]  
Hou ZT, 1998, CHINESE SCI BULL, V43, P881, DOI 10.1007/BF02884605
[6]   STOCHASTIC PROCESSES OCCURRING IN THE THEORY OF QUEUES AND THEIR ANALYSIS BY THE METHOD OF THE IMBEDDED MARKOV CHAIN [J].
KENDALL, DG .
ANNALS OF MATHEMATICAL STATISTICS, 1953, 24 (03) :338-354
[7]  
KENDALL DG, 1951, J ROY STAT SOC B, V13, P151
[8]  
KENDALL G, 1964, THEOR PROBAB APPL, V9, P1
[9]  
Liu G.X., 2000, PIECEWISE DETERMINIS
[10]   FLUCTUATION PROBLEMS IN THEORY OF QUEUES [J].
TAKACS, L .
ADVANCES IN APPLIED PROBABILITY, 1976, 8 (03) :548-583