Effect of Crystallinity on the Performance of P3HT/PC70BM/n-Dodecylthiol Polymer Solar Cells

被引:14
作者
Abu-Zahra, Nidal [1 ]
Algazzar, Mahmoud [1 ]
机构
[1] Univ Wisconsin, Dept Mat Sci & Engn, Milwaukee, WI 53211 USA
来源
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME | 2014年 / 136卷 / 02期
关键词
conjugated polymers; P3HT/PC70BM; photovoltaic cells; polymer solar cells; solar cell additives; n-dodecylthiol; crystallinity; PROCESSING ADDITIVES; PHASE-CHANGE; EFFICIENCY; SOLVENT; MORPHOLOGY; POLY(3-HEXYLTHIOPHENE); KINETICS; CONVERSION;
D O I
10.1115/1.4026100
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this research, n-dodecylthiol was added to P3HT/PC70BM polymer solar cells (PSCs) to improve the crystallinity of P3HT and enhance the phase separation of P3HT/PC70BM. Crystallinity of P3HT: PC70BM doped with 0-5% by volume of n-dodecylthiol was measured using X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques. Both methods showed improvement in crystallinity, which resulted in improving the power conversion efficiency (PCE) of polymer solar cells by 33%. In addition, annealing at 150 degrees C for 30 min showed further improvement in crystallinity with n-dodecylthiol concentration up to 2%. The highest power conversion efficiency of 3.21% was achieved with polymer crystallites size L of 11.2 nm, after annealing at 150 degrees C for 30 min under a vacuum atmosphere. The smaller crystallite size suggests a shorter path of the charge carriers between P3HT backbones, which could be beneficial to getting a higher short circuit current in the devices made with the additive. Kinetics study of P3HT: PC70BM crystallinity using Avrami model showed a faster crystallization rate (1/t(0.5)) at higher temperatures.
引用
收藏
页数:7
相关论文
共 54 条
[1]  
[Anonymous], 1976, MACROMOLECULAR PHYS
[2]   Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (02) :177-184
[3]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[4]  
Avrami M., 1940, J CHEM PHYS, V8, P212, DOI DOI 10.1063/1.1750631
[5]   Room to Improve Conjugated Polymer-Based Solar Cells: Understanding How Thermal Annealing Affects the Fullerene Component of a Bulk Heterojunction Photovoltaic Device [J].
Ayzner, Alexander L. ;
Wanger, Darcy D. ;
Tassone, Christopher J. ;
Tolbert, Sarah H. ;
Schwartz, Benjamin J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (48) :18711-18716
[6]   Effect of P3HT:PCBM concentration in solvent on performances of organic solar cells [J].
Baek, Woon-Hyuk ;
Yang, Hyun ;
Yoon, Tae-Sik ;
Kang, C. J. ;
Lee, Hyun Ho ;
Kim, Yong-Sang .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (08) :1263-1267
[7]   Poly (3-hexylthiophene) fibers for photovoltaic applications [J].
Berson, Solenn ;
De Bettignies, Remi ;
Bailly, Severine ;
Guillerez, Stephane .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (08) :1377-1384
[8]   Investigation of structural, optical, and electrical properties of regioregular poly(3-hexylthiophene)/fullerene blend nanocomposites for organic solar cells [J].
Boland, Patrick ;
Sunkavalli, Sri Sabarinadh ;
Chennuri, Sampath ;
Foe, Kurniawan ;
Abdel-Fattah, Tarek ;
Namkoong, Gon .
THIN SOLID FILMS, 2010, 518 (06) :1728-1731
[9]   Polymer solar cells: Recent development and possible routes for improvement in the performance [J].
Cai, Wanzhu ;
Gong, Xiong ;
Cao, Yong .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (02) :114-127
[10]   Low-Temperature Control of Nanoscale Morphology for High Performance Polymer Photovoltaics [J].
Campbell, Andrew R. ;
Hodgkiss, Justin M. ;
Westenhoff, Sebastian ;
Howard, Ian A. ;
Marsh, Robert A. ;
McNeill, Christopher R. ;
Friend, Richard H. ;
Greenham, Neil C. .
NANO LETTERS, 2008, 8 (11) :3942-3947