Strichartz estimates and nonlinear wave equation on nontrapping asymptotically conic manifolds

被引:14
作者
Zhang, Junyong [1 ,2 ]
机构
[1] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
[2] Australian Natl Univ, Dept Math, Canberra, ACT 0200, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会; 北京市自然科学基金;
关键词
Strichartz estimate; Asymptotically conic manifold; Spectral measure; Global existence; Scattering theory; HEAT KERNEL; SCATTERING; PROPAGATOR; EXISTENCE; RESOLVENT;
D O I
10.1016/j.aim.2014.11.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the global-in-time Strichartz estimates for wave equations on the nontrapping asymptotically conic manifolds. We obtain estimates for the full set of wave admissible indices, including the endpoint. The key points are the properties of the microlocalized spectral measure of Laplacian on this setting showed in [18] and a Littlewood-Paley squarefunction estimate. As applications, we prove the global existence and scattering for a family of nonlinear wave equations on this setting. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:91 / 111
页数:21
相关论文
共 30 条
  • [1] Alexopoulos GK, 2004, J MATH SOC JPN, V56, P833
  • [2] Strichartz Estimates for the Wave Equation on Flat Cones
    Blair, Matthew D.
    Ford, G. Austin
    Marzuola, Jeremy L.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (03) : 562 - 591
  • [3] Strichartz estimates for the wave equation on manifolds with boundary
    Blair, Matthew D.
    Smith, Hart F.
    Sogge, Christopher D.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (05): : 1817 - 1829
  • [4] Bouclet JM, 2010, B SOC MATH FR, V138, P1
  • [5] Global Strichartz estimates for nontrapping geometries: About an article by H. Smith and C. Sogge
    Burq, N
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (9-10) : 1675 - 1683
  • [6] Global existence for energy critical waves in 3-D domains
    Burq, Nicolas
    Lebeau, Gilles
    Planchon, Fabrice
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (03) : 831 - 845
  • [7] ON THE UPPER ESTIMATE OF THE HEAT KERNEL OF A COMPLETE RIEMANNIAN MANIFOLD
    CHENG, SY
    LI, P
    YAU, ST
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (05) : 1021 - 1063
  • [8] Maximal functions associated to filtrations
    Christ, M
    Kiselev, A
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (02) : 409 - 425
  • [9] Sobolev algebras on Lie groups and Riemannian manifolds
    Coulhon, T
    Russ, E
    Tardivel-Nachef, V
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2001, 123 (02) : 283 - 342
  • [10] GENERALIZED STRICHARTZ INEQUALITIES FOR THE WAVE-EQUATION
    GINIBRE, J
    VELO, G
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (01) : 50 - 68