General Gamma type operators based on q-integers

被引:0
作者
Karsli, Harun [1 ]
Agrawal, P. N. [2 ]
Goyal, Meenu [2 ]
机构
[1] Abant Izzet Baysal Univ, Fac Sci & Arts, Dept Math, TR-14280 Bolu, Turkey
[2] Indian Inst Technol, Dept Math, Roorkee 247667, Uttar Pradesh, India
关键词
General Gamma type operators; Rate of convergence; Modulus of continuity; Weighted approximation; Pointwise estimates; Statistical convergence; APPROXIMATION;
D O I
10.1016/j.amc.2014.11.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we introduce the q-analogue of the general Gamma type operators. We establish the moments of the operators by using the q-derivatives and then prove the basic convergence theorem. Next, the Voronovskaja type theorem and some direct results for the above operators are discussed. Also, the rate of convergence and weighted approximation by these operators in terms of modulus of continuity are studied. Then, we obtain point-wise estimate using the Lipschitz type maximal function. Further, we study the A-statistical convergence of these operators. Lastly, we propose a king type modification of these operators to obtain better estimates. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:564 / 575
页数:12
相关论文
共 24 条
[1]   Stancu type generalization of modified Schurer operators based on q-integers [J].
Agrawal, P. N. ;
Kumar, A. Sathish ;
Sinha, T. A. K. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 :765-776
[2]  
Aral A., 2013, Applications of q-Calculus in Operator Theory, DOI DOI 10.1007/978-1-4614-6946-9
[3]   On the convergence of a kind of q-gamma operators [J].
Cai, Qing-Bo ;
Zeng, Xiao-Ming .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[4]  
Derriennic MM., 2005, Rend. Circ. Mat. Palermo, VII, P269
[5]  
DeVore Ronald A., 1993, Constructive Approximation, V303
[6]   Statistical approximation by positive linear operators [J].
Duman, O ;
Orhan, C .
STUDIA MATHEMATICA, 2004, 161 (02) :187-197
[7]  
Gadijev A.D., 1976, MAT ZAMETKI, V20, P781
[8]   Some approximation properties of q-Durrmeyer operators [J].
Gupta, Vijay .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (01) :172-178
[9]   Convergence of the q analogue of Szasz-Beta operators [J].
Gupta, Vijay ;
Aral, Ali .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (02) :374-380
[10]  
Kac V., 2002, Quantum Calculus