SYMPLECTIC REFLECTION ALGEBRAS IN POSITIVE CHARACTERISTIC

被引:6
作者
Brown, K. A. [1 ]
Changtong, K. [2 ]
机构
[1] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
[2] Ubon Ratchathani Univ, Fac Sci, Dept Math, Ubon Ratchathani 34190, Thailand
关键词
symplectic reflection algebra; rational Cherednik algebra; fields of positive characteristic; REPRESENTATIONS; MODULES;
D O I
10.1017/S0013091507001435
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Basic properties of symplectic reflection algebra's over an algebraically closed field k of positive characteristic are laid out. These algebras are always finite modules over their centres, in contrast to the situation in characteristic 0. For the subclass of rational Cherednik algebras, we determine the PI-degree and the Goldie rank, and show that the Azumaya and smooth loci of the Centre coincide.
引用
收藏
页码:61 / 81
页数:21
相关论文
共 28 条
[1]   On singular Calogero-Moser spaces [J].
Bellamy, Gwyn .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :315-326
[2]  
BENSON J, 1993, LONDON MATH SOC LECT, V190
[3]  
BEZRUKAVNIKOV R., 2006, REPRESENT THEORY, V10, P254
[4]  
Bjork J.E., 1989, Lecture Notes in Math., V1404, P137
[5]  
Brown K.A., 2002, Lectures on algebraic quantum groups
[6]  
Brown KA, 2003, J REINE ANGEW MATH, V559, P193
[7]   Homological aspects of Noetherian PI Hopf algebras and irreducible modules of maximal dimension [J].
Brown, KA ;
Goodearl, KR .
JOURNAL OF ALGEBRA, 1997, 198 (01) :240-265
[8]  
CHANGTONG K, 2006, THESIS U GLASGOW
[9]  
COUTINHO SC, 1995, LONDON MATH SOC STUD, V33
[10]  
Eisenbud D., 1995, COMMUTATIVE ALGEBRA