Tripartite Coincidence-Best Proximity Points and Convexity in Generalized Metric Spaces

被引:4
作者
Norouzian, M. [1 ]
Abkar, A. [1 ]
机构
[1] Imam Khomeini Int Univ, Fac Sci, Dept Pure Math, Qazvin 34149, Iran
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2019年 / 50卷 / 04期
关键词
Coincidence point; Best proximity point; Cyclic contraction; Noncyclic contraction; G-metric space; Uniformly convex G-metric space; EXISTENCE; CONVERGENCE; MAPPINGS; THEOREMS;
D O I
10.1007/s00574-019-00137-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a triple (K; S; T) consisting of three nonlinear mappings defined on the union A B C of closed subsets of a generalized metric space. After introducing a notion of convex structure in the generalized metric space, we introduce the notion of tripartite contractions, tripartite semi-contractions, tripartite coincidence points, as well as tripartite best proximity points for the triple (K; S; T). We establish theorems on the existence and convergence of tripartite coincidence-best proximity points. Examples are given to support the new findings.
引用
收藏
页码:999 / 1028
页数:30
相关论文
共 29 条