Competing phases, phase separation, and coexistence in the extended one-dimensional bosonic Hubbard model

被引:23
作者
Batrouni, G. G. [1 ,2 ,3 ]
Rousseau, V. G. [4 ]
Scalettar, R. T. [5 ]
Gremaud, B. [3 ,6 ,7 ,8 ]
机构
[1] Univ Nice Sophia Antipolis, INLN, CNRS, F-06560 Valbonne, France
[2] Inst Univ France, F-75005 Paris, France
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[4] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[5] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[6] UPMC, Ecole Normale Super, CNRS, Lab Kastler Brossel, F-75005 Paris, France
[7] CNRS UNS NUS NTU, Int Joint Res Unit, Merlion MajuLab, UMI 3654, Singapore, Singapore
[8] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
来源
PHYSICAL REVIEW B | 2014年 / 90卷 / 20期
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
PATH-INTEGRAL COMPUTATION; NEAR-NEIGHBOR REPULSION; UNIVERSAL CONDUCTIVITY; INSULATOR TRANSITION; LOCALIZATION; SUPERFLUID; SUPERSOLIDS; SYSTEMS; ATOMS; STATE;
D O I
10.1103/PhysRevB.90.205123
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the phase diagram of the one-dimensional bosonic Hubbard model with contact (U) and near neighbor (V) interactions focusing on the gapped Haldane insulating (HI) phase which is characterized by an exotic nonlocal order parameter. The parameter regime (U, V, and mu) where this phase exists and how it competes with other phases, such as the supersolid (SS) phase, is incompletely understood. We use the stochastic Green function quantum Monte Carlo algorithm as well as the density matrix renormalization group to map out the phase diagram. Our main conclusions are that the HI exists only at rho = 1, the SS phase exists for a very wide range of parameters (including commensurate fillings), and displays power law decay in the one-body Green function. In addition, we show that at fixed integer density, the system exhibits phase separation in the (U, V) plane.
引用
收藏
页数:9
相关论文
共 52 条
  • [41] Phase diagram of the extended Bose-Hubbard model
    Rossini, Davide
    Fazio, Rosario
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14
  • [42] Superfluid density in continuous and discrete spaces: Avoiding misconceptions
    Rousseau, V. G.
    [J]. PHYSICAL REVIEW B, 2014, 90 (13)
  • [43] Rousseau VG, 2008, PHYS REV E, V77, DOI 10.1103/PhysRevE.77.056705
  • [44] Rousseau V. G., ARXIV12090946
  • [45] LOCALIZATION IN INTERACTING, DISORDERED, BOSE SYSTEMS
    SCALETTAR, RT
    BATROUNI, GG
    ZIMANYI, GT
    [J]. PHYSICAL REVIEW LETTERS, 1991, 66 (24) : 3144 - 3147
  • [46] Supersolids versus phase separation in two-dimensional lattice bosons
    Sengupta, P
    Pryadko, LP
    Alet, F
    Troyer, M
    Schmid, G
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (20)
  • [47] Spin supersolid in an anisotropic spin-one heisenberg chain
    Sengupta, P.
    Batista, C. D.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (21)
  • [48] Supersolid of hardcore bosons on the face-centered cubic lattice
    Suzuki, Takahumi
    Kawashima, Naoki
    [J]. PHYSICAL REVIEW B, 2007, 75 (18)
  • [49] Quantum phase transitions of interacting bosons and the supersolid phase
    vanOtterlo, A
    Wagenblast, KH
    Baltin, R
    Bruder, C
    Fazio, R
    Schon, G
    [J]. PHYSICAL REVIEW B, 1995, 52 (22): : 16176 - 16186
  • [50] Supersolid hard-core bosons on the triangular lattice
    Wessel, S
    Troyer, M
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (12)