From Thompson to Baer-Suzuki: A sharp characterization of the solvable radical

被引:20
作者
Gordeev, Nikolai [2 ]
Grunewald, Fritz [3 ]
Kunyavskii, Boris [1 ]
Plotkin, Eugene [1 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
[2] Herzen State Pedag Univ, Dept Math, St Petersburg 191186, Russia
[3] Univ Dusseldorf, Math Inst, D-40225 Dusseldorf, Germany
关键词
Finite group; Solvable radical; Simple algebraic group; Finite field; FINITE SOLUBLE GROUPS; MAXIMAL-SUBGROUPS; CONJUGACY CLASSES; ELEMENTS; NUMBER; LAWS;
D O I
10.1016/j.jalgebra.2010.01.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that an element g of prime order > 3 belongs to the solvable radical R(G) of a finite (or, more generally, a linear) group if and only if for every x is an element of G the subgroup generated by g, xgx(-1) is solvable. This theorem implies that a finite (or a linear) group G is solvable if and only if in each conjugacy class of G every two elements generate a solvable subgroup. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2888 / 2904
页数:17
相关论文
共 45 条
[1]  
Adem A., 2004, GRUNDLEHREN MATH WIS, V309
[2]   CONJUGACY CLASSES OF P-ELEMENTS [J].
ALPERIN, J ;
LYONS, R .
JOURNAL OF ALGEBRA, 1971, 19 (04) :536-&
[3]  
[Anonymous], LECT CHEV GROUPS YAL
[4]   ENGELSCHE ELEMENTE NOETHERSCHER GRUPPEN [J].
BAER, R .
MATHEMATISCHE ANNALEN, 1957, 133 (03) :256-270
[5]   Identities for finite solvable groups and equations in finite simple groups [J].
Bandman, T ;
Greuel, GM ;
Grunewald, F ;
Kunyavskii, B ;
Pfister, G ;
Plotkin, E .
COMPOSITIO MATHEMATICA, 2006, 142 (03) :734-764
[6]   Engel-like characterization of radicals in finite dimensional Lie algebras and finite groups [J].
Bandman, T ;
Borovoi, M ;
Grunewald, F ;
Kunyavskii, B ;
Plotkin, E .
MANUSCRIPTA MATHEMATICA, 2006, 119 (04) :465-481
[7]   UNIPOTENT ELEMENTS AND PARABOLIC SUBGROUPS OF REDUCTIVE GROUPS .1. [J].
BOREL, A ;
TITS, J .
INVENTIONES MATHEMATICAE, 1971, 12 (02) :95-&
[8]   CHARACTERIZATION OF FINITE SOLUBLE GROUPS BY LAWS IN A SMALL NUMBER OF VARIABLES [J].
BRANDL, R ;
WILSON, JS .
JOURNAL OF ALGEBRA, 1988, 116 (02) :334-341
[9]   A Characterization of finite soluble groups by laws in two variables [J].
Bray, JN ;
Wilson, JS ;
Wilson, RA .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 :179-186
[10]   THEOREM OF BOREL AND TITS FOR FINITE CHEVALLEY GROUPS [J].
BURGOYNE, N ;
WILLIAMSON, C .
ARCHIV DER MATHEMATIK, 1976, 27 (05) :489-491