Arctic sea-ice loss fuels extreme European snowfall

被引:82
作者
Bailey, Hannah [1 ]
Hubbard, Alun [2 ]
Klein, Eric S. [3 ]
Mustonen, Kaisa-Riikka [1 ]
Akers, Pete D. [4 ]
Marttila, Hannu [5 ]
Welker, Jeffrey M. [1 ,6 ]
机构
[1] Univ Oulu, Ecol & Genet Res Unit, Oulu, Finland
[2] UiT Arctic Univ Norway, Ctr Arctic Gas Hydrate Environm & Climate, Dept Geosci, Tromso, Norway
[3] Univ Alaska Anchorage, Dept Geol Sci, Anchorage, AK USA
[4] Natl Ctr Sci Res, Inst Geosci & Environm, Grenoble, France
[5] Univ Oulu, Water Energy & Environm Engn Res Unit, Oulu, Finland
[6] Univ Alaska Anchorage, Dept Biol Sci, Anchorage, AK USA
基金
芬兰科学院;
关键词
STRATOSPHERIC POLAR VORTEX; VAPOR ISOTOPIC COMPOSITION; COLD-AIR OUTBREAKS; AMPLIFICATION; PRECIPITATION; IMPACT;
D O I
10.1038/s41561-021-00719-y
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The loss of Arctic sea-ice enhances evaporation and fuels extreme European winter snowfall, according to an analysis of atmospheric water vapour isotope measurements. The loss of Arctic sea-ice has been implicated with severe cold and snowy mid-latitude winters. However, the mechanisms and a direct link remain elusive due to limited observational evidence. Here we present atmospheric water vapour isotope measurements from Arctic Finland during 'the Beast from the East'-a severe anticyclonic outbreak that brought heavy snowfall and freezing across Europe in February 2018. We find that an anomalously warm Barents Sea, with a 60% ice-free surface, supplied up to 9.3 mm d(-1) moisture flux to this cold northeasterly airflow. We demonstrate that approximately 140 gigatonnes of water was evaporated from the Barents Sea during the event, potentially supplying up to 88% of the corresponding fresh snow over northern Europe. Reanalysis data show that from 1979 to 2020, net March evaporation across the Barents Sea increased by approximately 70 kg per square metre of sea-ice lost (r(2) = 0.73, P < 0.01), concurrent with a 1.6 mm (water equivalent) per year increase in Europe's maximum snowfall. Our analysis directly links Arctic sea-ice loss with increased evaporation and extreme snowfall, and signifies that by 2080, an Atlantified ice-free Barents Sea will be a major source of winter moisture for continental Europe.
引用
收藏
页码:283 / +
页数:8
相关论文
共 58 条
[1]   Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study [J].
Aemisegger, F. ;
Sturm, P. ;
Graf, P. ;
Sodemann, H. ;
Pfahl, S. ;
Knohl, A. ;
Wernli, H. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (07) :1491-1511
[2]   Arctic Snow Isotope Hydrology: A Comparative Snow-Water Vapor Study [J].
Ala-aho, Pertti ;
Welker, Jeffrey M. ;
Bailey, Hannah ;
Hojlund Pedersen, Stine ;
Kopec, Ben ;
Klein, Eric ;
Mellat, Moein ;
Mustonen, Kaisa-Riikka ;
Noor, Kashif ;
Marttila, Hannu .
ATMOSPHERE, 2021, 12 (02) :1-32
[3]   ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better? [J].
Albergel, Clement ;
Dutra, Emanuel ;
Munier, Simon ;
Calvet, Jean-Christophe ;
Munoz-Sabater, Joaquin ;
de Rosnay, Patricia ;
Balsamo, Gianpaolo .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2018, 22 (06) :3515-3532
[4]   Future Arctic sea ice loss reduces severity of cold air outbreaks in midlatitudes [J].
Ayarzagueena, Blanca ;
Screen, James A. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (06) :2801-2809
[5]   Synoptic and Mesoscale Mechanisms Drive Winter Precipitation δ18O/δ2H in South-Central Alaska [J].
Bailey, Hannah L. ;
Klein, Eric S. ;
Welker, Jeffrey M. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (07) :4252-4266
[6]   Synoptic scale controls on the 18O in precipitation across Beringia [J].
Bailey, Hannah L. ;
Kaufman, Darrell S. ;
Henderson, Andrew C. G. ;
Leng, Melanie J. .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (11) :4608-4616
[7]   Strong future increases in Arctic precipitation variability linked to poleward moisture transport [J].
Bintanja, R. ;
van der Wiel, K. ;
van der Linden, E. C. ;
Reusen, J. ;
Bogerd, L. ;
Krikken, F. ;
Selten, F. M. .
SCIENCE ADVANCES, 2020, 6 (07)
[8]  
Bintanja R, 2017, NAT CLIM CHANGE, V7, P263, DOI [10.1038/NCLIMATE3240, 10.1038/nclimate3240]
[9]   Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat [J].
Bintanja, R. ;
Selten, F. M. .
NATURE, 2014, 509 (7501) :479-+
[10]   Increasing evaporation amounts seen in the Arctic between 2003 and 2013 from AIRS data [J].
Boisvert, L. N. ;
Wu, D. L. ;
Shie, C. -L. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (14) :6865-6881