Bayesian estimation of hyperparameters for indirect Fourier transformation in small-angle scattering

被引:102
作者
Hansen, S [1 ]
机构
[1] Royal Vet & Agr Univ, Dept Math & Phys, DK-1871 Frederiksberg C, Denmark
来源
JOURNAL OF APPLIED CRYSTALLOGRAPHY | 2000年 / 33卷
关键词
D O I
10.1107/S0021889800012930
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bayesian analysis is applied to the problem of estimation of hyperparameters, which are necessary for indirect Fourier transformation of small-angle scattering data. The hyperparameters most frequently needed are the overall noise level of the experiment and the maximum dimension of the scatterer. Bayesian methods allow the posterior probability distribution for the hyperparameters to be determined, making it possible to calculate the distance distribution function of interest as the weighted mean of all possible solutions to the indirect transformation problem. Consequently no choice of hyperparameters has to be made. The applicability of the method is demonstrated using simulated as well as real experimental data.
引用
收藏
页码:1415 / 1421
页数:7
相关论文
共 19 条
[1]   MAXIMUM-ENTROPY ANALYSIS OF OVERSAMPLED DATA PROBLEMS [J].
BRYAN, RK .
EUROPEAN BIOPHYSICS JOURNAL, 1990, 18 (03) :165-174
[2]   NEW METHOD FOR EVALUATION OF SMALL-ANGLE SCATTERING DATA [J].
GLATTER, O .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1977, 10 (OCT1) :415-421
[3]  
Glatter O., 1982, SMALL ANGLE XRAY SCA
[4]  
Hansen S, 1996, EUR BIOPHYS J BIOPHY, V24, P143, DOI 10.1007/BF00180271
[5]  
Hansen S, 1996, FUND THEOR, V70, P69
[6]   A COMPARISON OF 3 DIFFERENT METHODS FOR ANALYZING SMALL-ANGLE SCATTERING DATA [J].
HANSEN, S ;
PEDERSEN, JS .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1991, 24 :541-548
[7]  
Jaynes E. T., 1983, Papers on Probability, Statistics and Statistical Physics
[8]  
KULLBACK S, 1959, INFORMATION THEORY S
[9]  
MACKAY DJC, 1992, FUND THEOR, V50, P39
[10]   DISTANCE INFORMATION DERIVED FROM NEUTRON LOW-Q SCATTERING [J].
MAY, RP ;
NOWOTNY, V .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1989, 22 :231-237