Visible light photonic integrated Brillouin laser

被引:70
作者
Chauhan, Nitesh [1 ]
Isichenko, Andrei [1 ]
Liu, Kaikai [1 ]
Wang, Jiawei [1 ]
Zhao, Qiancheng [1 ]
Behunin, Ryan O. [2 ,3 ]
Rakich, Peter T. [4 ]
Jayich, Andrew M. [5 ]
Fertig, C. [6 ]
Hoyt, C. W. [6 ]
Blumenthal, Daniel J. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] No Arizona Univ, Dept Appl Phys & Mat Sci, Flagstaff, AZ 86011 USA
[3] No Arizona Univ, Ctr Mat Interfaces Res & Applicat, Flagstaff, AZ 86011 USA
[4] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
[5] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[6] Honeywell Int, Plymouth, MN USA
关键词
COHERENCE; CHIP; STABILIZATION; SCATTERING; CAVITY;
D O I
10.1038/s41467-021-24926-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Narrow linewidth visible light lasers are critical for atomic, molecular and optical (AMO) physics including atomic clocks, quantum computing, atomic and molecular spectroscopy, and sensing. Stimulated Brillouin scattering (SBS) is a promising approach to realize highly coherent on-chip visible light laser emission. Here we report demonstration of a visible light photonic integrated Brillouin laser, with emission at 674nm, a 14.7mW optical threshold, corresponding to a threshold density of 4.92mW mu m(-2), and a 269Hz linewidth. Significant advances in visible light silicon nitride/silica all-waveguide resonators are achieved to overcome barriers to SBS in the visible, including 1dB/meter waveguide losses, 55.4 million quality factor (Q), and measurement of the 25.110GHz Stokes frequency shift and 290MHz gain bandwidth. This advancement in integrated ultra-narrow linewidth visible wavelength SBS lasers opens the door to compact quantum and atomic systems and implementation of increasingly complex AMO based physics and experiments.
引用
收藏
页数:8
相关论文
共 62 条
  • [1] An optical tweezer array of ultracold molecules
    Anderegg, Loic
    Cheuk, Lawrence W.
    Bao, Yicheng
    Burchesky, Sean
    Ketterle, Wolfgang
    Ni, Kang-Kuen
    Doyle, John M.
    [J]. SCIENCE, 2019, 365 (6458) : 1156 - +
  • [2] Diamond Brillouin laser in the visible
    Bai, Zhenxu
    Williams, Robert J.
    Kitzler, Ondrej
    Sarang, Soumya
    Spence, David J.
    Wang, Yulei
    Lu, Zhiwei
    Mildren, Richard P.
    [J]. APL PHOTONICS, 2020, 5 (03)
  • [3] Fundamental noise dynamics in cascaded-order Brillouin lasers
    Behunin, Ryan O.
    Otterstrom, Nils T.
    Rakich, Peter T.
    Gundavarapu, Sarat
    Blumenthal, Daniel J.
    [J]. PHYSICAL REVIEW A, 2018, 98 (02)
  • [4] Quantum coherence and entanglement with ultracold atoms in optical lattices
    Bloch, Immanuel
    [J]. NATURE, 2008, 453 (7198) : 1016 - 1022
  • [5] Photonic integration for UV to IR applications
    Blumenthal, Daniel J.
    [J]. APL PHOTONICS, 2020, 5 (02)
  • [6] Silicon Nitride in Silicon Photonics
    Blumenthal, Daniel J.
    Heideman, Rene
    Geuzebroek, Douwe
    Leinse, Arne
    Roeloffzen, Chris
    [J]. PROCEEDINGS OF THE IEEE, 2018, 106 (12) : 2209 - 2231
  • [7] Cold molecules: Progress in quantum engineering of chemistry and quantum matter
    Bohn, John L.
    Rey, Ana Maria
    Ye, Jun
    [J]. SCIENCE, 2017, 357 (6355) : 1002 - 1010
  • [8] A visible-light integrated photonic platform for atomic systems
    Bramhavara, Suraj
    Sorace-Agaskar, Cheryl
    Kharas, Dave
    Loh, William
    Maxson, Ryan
    West, Gavin N.
    Niffenegger, Robert
    Juodawlkis, Paul W.
    Chiaverini, John
    Sage, Jeremy M.
    [J]. INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXIII, 2019, 10921
  • [9] Brodnik GM, 2020, 2020 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC)
  • [10] Chauhan N., 2020, C LAS EL, DOI [10.1364/CLEO_SI.2020.STh1J.2, DOI 10.1364/CLEO_SI.2020.STH1J.2]