Visible light photonic integrated Brillouin laser

被引:84
作者
Chauhan, Nitesh [1 ]
Isichenko, Andrei [1 ]
Liu, Kaikai [1 ]
Wang, Jiawei [1 ]
Zhao, Qiancheng [1 ]
Behunin, Ryan O. [2 ,3 ]
Rakich, Peter T. [4 ]
Jayich, Andrew M. [5 ]
Fertig, C. [6 ]
Hoyt, C. W. [6 ]
Blumenthal, Daniel J. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] No Arizona Univ, Dept Appl Phys & Mat Sci, Flagstaff, AZ 86011 USA
[3] No Arizona Univ, Ctr Mat Interfaces Res & Applicat, Flagstaff, AZ 86011 USA
[4] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
[5] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[6] Honeywell Int, Plymouth, MN USA
关键词
COHERENCE; CHIP; STABILIZATION; SCATTERING; CAVITY;
D O I
10.1038/s41467-021-24926-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Narrow linewidth visible light lasers are critical for atomic, molecular and optical (AMO) physics including atomic clocks, quantum computing, atomic and molecular spectroscopy, and sensing. Stimulated Brillouin scattering (SBS) is a promising approach to realize highly coherent on-chip visible light laser emission. Here we report demonstration of a visible light photonic integrated Brillouin laser, with emission at 674nm, a 14.7mW optical threshold, corresponding to a threshold density of 4.92mW mu m(-2), and a 269Hz linewidth. Significant advances in visible light silicon nitride/silica all-waveguide resonators are achieved to overcome barriers to SBS in the visible, including 1dB/meter waveguide losses, 55.4 million quality factor (Q), and measurement of the 25.110GHz Stokes frequency shift and 290MHz gain bandwidth. This advancement in integrated ultra-narrow linewidth visible wavelength SBS lasers opens the door to compact quantum and atomic systems and implementation of increasingly complex AMO based physics and experiments.
引用
收藏
页数:8
相关论文
共 62 条
[1]   An optical tweezer array of ultracold molecules [J].
Anderegg, Loic ;
Cheuk, Lawrence W. ;
Bao, Yicheng ;
Burchesky, Sean ;
Ketterle, Wolfgang ;
Ni, Kang-Kuen ;
Doyle, John M. .
SCIENCE, 2019, 365 (6458) :1156-+
[2]   Diamond Brillouin laser in the visible [J].
Bai, Zhenxu ;
Williams, Robert J. ;
Kitzler, Ondrej ;
Sarang, Soumya ;
Spence, David J. ;
Wang, Yulei ;
Lu, Zhiwei ;
Mildren, Richard P. .
APL PHOTONICS, 2020, 5 (03)
[3]   Fundamental noise dynamics in cascaded-order Brillouin lasers [J].
Behunin, Ryan O. ;
Otterstrom, Nils T. ;
Rakich, Peter T. ;
Gundavarapu, Sarat ;
Blumenthal, Daniel J. .
PHYSICAL REVIEW A, 2018, 98 (02)
[4]   Quantum coherence and entanglement with ultracold atoms in optical lattices [J].
Bloch, Immanuel .
NATURE, 2008, 453 (7198) :1016-1022
[5]   Photonic integration for UV to IR applications [J].
Blumenthal, Daniel J. .
APL PHOTONICS, 2020, 5 (02)
[6]   Silicon Nitride in Silicon Photonics [J].
Blumenthal, Daniel J. ;
Heideman, Rene ;
Geuzebroek, Douwe ;
Leinse, Arne ;
Roeloffzen, Chris .
PROCEEDINGS OF THE IEEE, 2018, 106 (12) :2209-2231
[7]   Cold molecules: Progress in quantum engineering of chemistry and quantum matter [J].
Bohn, John L. ;
Rey, Ana Maria ;
Ye, Jun .
SCIENCE, 2017, 357 (6355) :1002-1010
[8]   A visible-light integrated photonic platform for atomic systems [J].
Bramhavara, Suraj ;
Sorace-Agaskar, Cheryl ;
Kharas, Dave ;
Loh, William ;
Maxson, Ryan ;
West, Gavin N. ;
Niffenegger, Robert ;
Juodawlkis, Paul W. ;
Chiaverini, John ;
Sage, Jeremy M. .
INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXIII, 2019, 10921
[9]  
Brodnik GM, 2020, 2020 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC)
[10]  
Chauhan N., 2020, CLEO SCI INNOVATIONS, pSTh1J2