VERY WEAK SOLUTIONS OF SINGULAR POROUS MEDIUM EQUATIONS WITH MEASURE DATA

被引:9
作者
Boegelein, Verena [1 ]
Duzaar, Frank [1 ]
Gianazza, Ugo [2 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, D-91056 Erlangen, Germany
[2] Univ Pavia, Dept Math F Casorati, I-27100 Pavia, Italy
关键词
Singular porous medium equations; very weak solutions; existence; Riesz potential; boundedness; NONLINEAR PARABOLIC EQUATIONS; ELLIPTIC-EQUATIONS; SUPERSOLUTIONS; GROWTH;
D O I
10.3934/cpaa.2015.14.23
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider non-homogeneous, singular (0 < m < 1) porous medium type equations with a non-negative Radon-measure it having finite total mass mu(E-T) on the right-hand side. We deal with a Cauchy-Dirichlet problem for these type of equations, with homogeneous boundary conditions on the parabolic boundary of the domain E-T, and we establish the existence of a solution in the sense of distributions. Finally, we show that the constructed solution satisfies linear pointwise estimates via linear Riesz potentials.
引用
收藏
页码:23 / 49
页数:27
相关论文
共 22 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]  
[Anonymous], 1988, REV MAT IBEROAMER
[3]  
Boccardo L, 1997, B UNIONE MAT ITAL, V11A, P439
[4]   Nonlinear parabolic equations with measure data [J].
Boccardo, L ;
DallAglio, A ;
Gallouet, T ;
Orsina, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 147 (01) :237-258
[5]  
BOCCARDO L, 1992, COMMUN PART DIFF EQ, V17, P641
[6]   Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data [J].
Boccardo, L ;
Gallouet, T ;
Orsina, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (05) :539-551
[7]   POROUS MEDIUM TYPE EQUATIONS WITH MEASURE DATA AND POTENTIAL ESTIMATES [J].
Boegelein, Verena ;
Duzaar, Frank ;
Gianazza, Ugo .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (06) :3283-3330
[8]   Parabolic Systems with p, q-Growth: A Variational Approach [J].
Boegelein, Verena ;
Duzaar, Frank ;
Marcellini, Paolo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 210 (01) :219-267
[9]  
Bogelein V., 2014, PREPRINT
[10]   Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term [J].
Dall'Aglio, A ;
Giachetti, D ;
Leone, C ;
de León, SS .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (01) :97-126