Novel Dystonia Genes: Clues on Disease Mechanisms and the Complexities of High-Throughput Sequencing

被引:51
作者
Domingo, Aloysius [1 ]
Erro, Roberto [2 ,3 ]
Lohmann, Katja [1 ]
机构
[1] Univ Lubeck, Inst Neurogenet, Lubeck, Germany
[2] UCL Inst Neurol, Sobell Dept Motor Neurosci & Movement Disorders, Queen Sq, London WC1N 3BG, England
[3] Univ Verona, Dipartimento Sci Neurol & Movimento, I-37100 Verona, Italy
关键词
dystonia; next-generation sequencing; calcium homeostasis; neurodevelopment; disease mechanism; TRANSCRIPTION FACTOR THAP1; MYOCLONUS-DYSTONIA; MUTATIONS; CALCIUM; MOUSE; EXPRESSION; PHENOTYPES; VARIANTS; GENETICS; INSIGHTS;
D O I
10.1002/mds.26600
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Dystonia is a genetically heterogenous disease and a prototype disorder where next-generation sequencing has facilitated the identification of new pathogenic genes. This includes the first two genes linked to recessively inherited isolated dystonia, that is, HPCA (hippocalcin) and COL6A3 (collagen VI alpha 3). These genes are proposed to underlie cases of the so-called DYT2-like dystonia, while also reiterating two distinct pathways in dystonia pathogenesis. First, deficiency in HPCA function is thought to alter calcium homeostasis, a mechanism that has previously been forwarded for CACNA1A and ANO3. The novel myoclonus-dystonia genes KCTD17 and CACNA1B also implicate abnormal calcium signaling in dystonia. Second, the phenotype in COL6A3-loss-of-function zebrafish models argues for a neurodevelopmental defect, which has previously been suggested as a possible biological mechanism for THAP1, TOR1A, and TAF1 based on expression data. The newly reported myoclonus-dystonia gene, RELN, plays also a role in the formation of brain structures. Defects in neurodevelopment likewise seem to be a recurrent scheme underpinning mainly complex dystonias, for example those attributable to biallelic mutations in GCH1, TH, SPR, or to heterozygous TUBB4A mutations. To date, it remains unclear whether dystonia is a common phenotypic outcome of diverse underlying disease mechanisms, or whether the different genetic causes converge in a single pathway. Importantly, the relevance of pathways highlighted by novel dystonia genes identified by high-throughput sequencing depends on the confirmation of mutation pathogenicity in subsequent genetic and functional studies. However, independent, careful validation of genetic findings lags behind publications of newly identified genes. We conclude with a discussion on the characteristics of true-positive reports. (c) 2016 International Parkinson and Movement Disorder Society
引用
收藏
页码:471 / 477
页数:7
相关论文
共 43 条
[31]   The functional neuroanatomy of dystonia [J].
Neychev, Vladimir K. ;
Gross, Robert E. ;
Lehericy, Stephane ;
Hess, Ellen J. ;
Jinnah, H. A. .
NEUROBIOLOGY OF DISEASE, 2011, 42 (02) :185-201
[32]   Hereditary dystonia as a neurodevelopmental circuit disorder: Evidence from neuroimaging [J].
Niethammer, Martin ;
Carbon, Maren ;
Argyelan, Miklos ;
Eidelberg, David .
NEUROBIOLOGY OF DISEASE, 2011, 42 (02) :202-209
[33]   TAF1 Variants Are Associated with Dysmorphic Features, Intellectual Disability, and Neurological Manifestations [J].
O'Rawe, Jason A. ;
Wu, Yiyang ;
Doerfel, Max J. ;
Rope, Alan F. ;
Au, P. Y. Billie ;
Parboosingh, Jillian S. ;
Moon, Sungjin ;
Kousi, Maria ;
Kosma, Konstantina ;
Smith, Christopher S. ;
Tzetis, Maria ;
Schuette, Jane L. ;
Hufnagel, Robert B. ;
Prada, Carlos E. ;
Martinez, Francisco ;
Orellana, Carmen ;
Crain, Jonathan ;
Caro-Llopis, Alfonso ;
Oltra, Silvestre ;
Monfort, Sandra ;
Jimenez-Barron, Laura T. ;
Swensen, Jeffrey ;
Ellingwood, Sara ;
Smith, Rosemarie ;
Fang, Han ;
Ospina, Sandra ;
Stegmann, Sander ;
Den Hollander, Nicolette ;
Mittelman, David ;
Highnam, Gareth ;
Robison, Reid ;
Yang, Edward ;
Faivre, Laurence ;
Roubertie, Agathe ;
Riviere, Jean-Baptiste ;
Monaghan, Kristin G. ;
Wang, Kai ;
Davis, Erica E. ;
Katsanis, Nicholas ;
Kalscheuer, Vera M. ;
Wang, Edith H. ;
Metcalfe, Kay ;
Kleefstra, Tjitske ;
Innes, A. Micheil ;
Kitsiou-Tzeli, Sophia ;
Rosello, Monica ;
Keegan, Catherine E. ;
Lyon, Gholson J. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2015, 97 (06) :922-932
[34]  
Raike Robert S, 2005, NeuroRx, V2, P504
[35]   Developmental Profile of the Aberrant Dopamine D2 Receptor Response in Striatal Cholinergic Interneurons in DYT1 Dystonia [J].
Sciamanna, Giuseppe ;
Tassone, Annalisa ;
Martella, Giuseppina ;
Mandolesi, Georgia ;
Puglisi, Francesca ;
Cuomo, Dario ;
Madeo, Grazia ;
Ponterio, Giulia ;
Standaert, David George ;
Bonsi, Paola ;
Pisani, Antonio .
PLOS ONE, 2011, 6 (09)
[36]   Two novel CACNA1A gene mutations associated with episodic ataxia type 2 and interictal dystonia [J].
Spacey, SD ;
Materek, LA ;
Szczygielski, BI ;
Bird, TD .
ARCHIVES OF NEUROLOGY, 2005, 62 (02) :314-316
[37]   THE ROLE OF CALCIUM AND MITOCHONDRIAL OXIDANT STRESS IN THE LOSS OF SUBSTANTIA NIGRA PARS COMPACTA DOPAMINERGIC NEURONS IN PARKINSON'S DISEASE [J].
Surmeier, D. J. ;
Guzman, J. N. ;
Sanchez-Padilla, J. ;
Schumacker, P. T. .
NEUROSCIENCE, 2011, 198 :221-231
[38]   Convergent mechanisms in etiologically-diverse dystonias [J].
Thompson, Valerie B. ;
Jinnah, H. A. ;
Hess, Ellen J. .
EXPERT OPINION ON THERAPEUTIC TARGETS, 2011, 15 (12) :1387-1403
[39]   Cerebellar synaptogenesis is compromised in mouse models of DYT1 dystonia [J].
Vanni, Valentina ;
Puglisi, Francesca ;
Bonsi, Paola ;
Ponterio, Giulia ;
Maltese, Marta ;
Pisani, Antonio ;
Mandolesi, Georgia .
EXPERIMENTAL NEUROLOGY, 2015, 271 :457-467
[40]   Developmental patterns of torsinA and torsinB expression [J].
Vasudevan, A ;
Breakefield, XO ;
Bhide, PG .
BRAIN RESEARCH, 2006, 1073 :139-145