COMPARISON OF POWER OPERATIONS IN MORAVA E-THEORIES

被引:0
作者
Torii, Takeshi [1 ]
机构
[1] Okayama Univ, Dept Math, Okayama 7008530, Japan
关键词
Morava E-theory; power operation; p-divisible group; Hopf algebroid; GENERALIZED CHERN CHARACTER; FORMAL GROUP LAWS; COHOMOLOGY;
D O I
10.4310/HHA.2017.v19.n1.a4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There is a Hopf algebroid without antipode which is the dual of the algebra of power operations in Morava E-theory. In this paper we compare the category of comodules over the Hopf algebroid in the nth Morava E-theory with that in the (n + 1 )st Morava E-theory. We show that the nth Morava E-theory of a finite complex with power operations can be obtained from the (n + 1)st Morava E-theorv with power operations.
引用
收藏
页码:59 / 87
页数:29
相关论文
共 19 条
[1]   Power operations in elliptic cohomology and representations of loop groups [J].
Ando, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) :5619-5666
[2]   The sigma orientation is an H∞ map [J].
Ando, M ;
Hopkins, MJ ;
Strickland, NP .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (02) :247-334
[3]   ISOGENIES OF FORMAL GROUP LAWS AND POWER OPERATIONS IN THE COHOMOLOGY THEORIES E(N) [J].
ANDO, M .
DUKE MATHEMATICAL JOURNAL, 1995, 79 (02) :423-485
[4]  
[Anonymous], 1996, ANN MATH STUD
[5]   A Lyndon-Hochschild-Serre spectral sequence for certain homotopy fixed point spectra [J].
Devinatz, ES .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (01) :129-150
[6]  
Goerss P. G., 2004, London Math. Soc. Lecture Note Ser., V315, P151
[7]  
GREITHER C, 1992, LECT NOTES MATH, V1534, pR3
[8]  
Hovey M, 1997, MEM AM MATH SOC, V128, P1
[9]  
KATZ NM, 1985, ANN MATH STUD, V108
[10]  
RAVENEL D., 1986, COMPLEX COBORDISM ST, V121