Based on a large quantity of experimental work and study of the two-dimensional MHD (Magnetohydrodynamic) simulation describing the implosion dynamics of X-pinch, at the same time taking basic physical processes of implosion into account, this paper seeks to build a two-dimensional MHD simulation model on implosion dynamics throughout the whole constriction evolution (including formation of dense plasma, compression, generation of hot spot, X-ray pulsed radiation), determine the target area for numerical simulation, as well as the initial time for simulation and plasma initial state. As for two-dimensional MHD models which indicate the physical process during different stages, a clear boundary condition is explored along with Lagrange-Euler numerical method which strives to reproduce the dynamics of the X-pinch implosion and better study the physical properties during the X-pinch implosion dynamics. Results of this thesis will enrich the X-pinch research areas of basic theories and analytical methods, which is of great theoretical significance and application value.