Novel sequential monte carlo method to bearing only tracking

被引:0
|
作者
Qu, Hongquan [1 ]
Li, Shaohong [1 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100083, Peoples R China
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are often used in target tracking, but the required Posterior Density Function (PDF) is still approximated by a Gaussian, which may be a gross distortion of the true underlying structure and lead to filter, divergence when performing EKF or UKF. Because the uncertainty of process model in bearing only tracking is small compared with the uncertainty of the measurements, resample introduces the problem of loss of diversity among the particles with Particle Filter. This may lead to undesired clustering of the samples and eventually inaccurate results. The SMCEKF and SMCUKF algorithms given in this paper ensure the independency of particles by introducing parallel independent EKFs and UKFs for the bearing only tracking problem. The resample technique, which was suggested in the particle filter as a method to reduce the degeneracy problem, is given up. The required density of the state vector is represented as a set of random samples, which is updated and propagated recursively on their own estimate. The performance of the filters is greatly superior to the standard EKF and UKF. Analysis and simulation results of the bearing only tracking problem have proved validity of the algorithms.
引用
收藏
页码:701 / +
页数:3
相关论文
共 50 条
  • [11] Sequential noise compensation by sequential Monte Carlo method
    Yao, K
    Nakamura, S
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 1213 - 1220
  • [12] Tempo tracking and rhythm quantization by sequential Monte Carlo
    Cemgil, AT
    Kappen, B
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 1361 - 1368
  • [13] Sequential Monte Carlo-guided ensemble tracking
    Wang, Yuru
    Liu, Qiaoyuan
    Jiang, Longkui
    Yin, Minghao
    Wang, Shengsheng
    PLOS ONE, 2017, 12 (04):
  • [14] Sequential Monte Carlo framework for extended object tracking
    Vermaak, J
    Ikoma, N
    Godsill, SJ
    IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 2005, 152 (05) : 353 - 363
  • [15] Sparse index tracking using sequential Monte Carlo
    Satpathy, Tanmay
    Shah, Rushabh
    QUANTITATIVE FINANCE, 2022, 22 (09) : 1579 - 1592
  • [16] Sequential Monte Carlo for manoeuvring target tracking in clutter
    Gordon, NJ
    Doucet, A
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 1999, 1999, 3809 : 493 - 500
  • [17] Wideband target tracking by using SVR-based sequential Monte Carlo method
    Kabaoglu, Nihat
    Cirpan, Hakan A.
    SIGNAL PROCESSING, 2008, 88 (11) : 2804 - 2816
  • [18] Enhancing particle image tracking performance with a sequential Monte Carlo method: The bootstrap filter
    Shi, Shengxian
    Chen, Daoyi
    FLOW MEASUREMENT AND INSTRUMENTATION, 2011, 22 (03) : 190 - 200
  • [19] A Sequential Monte Carlo Method for Identifying Motion Parameters from Particle Tracking Trajectories
    Ashley, Trevor T.
    Andersson, Sean B.
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 193A - 193A
  • [20] A sequential Monte Carlo method for motif discovery
    Liang, Kuo-ching
    Wang, Xiaodong
    Anastassiou, Dimitris
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (09) : 4496 - 4507