Invariant Quantum States of Quadratic Hamiltonians

被引:11
作者
Dodonov, Viktor V. [1 ,2 ]
机构
[1] Univ Brasilia, Inst Phys, POB 04455, BR-70919970 Brasilia, DF, Brazil
[2] Univ Brasilia, Int Ctr Phys, BR-70919970 Brasilia, DF, Brazil
关键词
covariance matrix; positively (semi)definite matrices; symplectic transformations; charged particle in homogeneous magnetic fields; generalized frequency converter; TIME-DEPENDENT INVARIANTS; PARTIALLY COHERENT BEAMS; WIGNER DISTRIBUTION FUNCTION; CHARGED-PARTICLE; GEOMETRIC PHASES; PARAMETRIC CHARACTERIZATION; UNIVERSAL INVARIANTS; HARMONIC-OSCILLATOR; MOMENT INVARIANTS; GREEN-FUNCTIONS;
D O I
10.3390/e23050634
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of finding covariance matrices that remain constant in time for arbitrary multi-dimensional quadratic Hamiltonians (including those with time-dependent coefficients) is considered. General solutions are obtained.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Quantum integrals of motion for variable quadratic Hamiltonians
    Cordero-Soto, Ricardo
    Suazo, Erwin
    Suslov, Sergei K.
    ANNALS OF PHYSICS, 2010, 325 (09) : 1884 - 1912
  • [2] Tomography of Multimode Quantum Systems with Quadratic Hamiltonians and Multivariable Hermite Polynomials
    V. I. Man'ko
    V. A. Sharapov
    E. V. Shchukin
    Journal of Russian Laser Research, 2001, 22 : 410 - 436
  • [3] Quadratic time dependent Hamiltonians and separation of variables
    Anzaldo-Meneses, A.
    ANNALS OF PHYSICS, 2017, 381 : 90 - 106
  • [4] Dynamical invariants for variable quadratic Hamiltonians
    Suslov, Sergei K.
    PHYSICA SCRIPTA, 2010, 81 (05)
  • [5] Quantum treatment of atom-field interaction via the quadratic invariant
    Abdalla, M. Sebawe
    Eleuch, H.
    Perina, J.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2012, 29 (04) : 719 - 728
  • [6] Time evolution of two-dimensional quadratic Hamiltonians: A Lie algebraic approach
    Sandoval-Santana, J. C.
    Ibarra-Sierra, V. G.
    Cardoso, J. L.
    Kunold, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (04)
  • [7] Inverse problem of quadratic time-dependent Hamiltonians
    Guo Guang-Jie
    Meng Yan
    Chang Hong
    Duan Hui-Zeng
    Di Bing
    CHINESE PHYSICS B, 2015, 24 (08)
  • [8] On the invariant method for the time-dependent non-Hermitian Hamiltonians
    Khantoul, B.
    Bounames, A.
    Maamache, M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (06):
  • [9] Quantum Computation and Visualization of Hamiltonians Using Discrete Quantum Mechanics and IBM QISKit
    Miceli, Raffaele
    McGuigan, Michael
    2018 NEW YORK SCIENTIFIC DATA SUMMIT (NYSDS), 2018,
  • [10] Wigner Distribution Function for the Time-Dependent Quadratic-Hamiltonian Quantum System using the Lewis–Riesenfeld Invariant Operator
    Jeong Ryeol Choi
    International Journal of Theoretical Physics, 2005, 44 : 327 - 348