Free σ-products and fundamental groups of subspaces of the plane

被引:23
作者
Eda, K [1 ]
机构
[1] Waseda Univ, Sch Sci & Engn, Tokyo 169, Japan
关键词
free sigma-product; sigma-word; Hawaiian earring; fundamental group; plane; spatial homomorphism; standard homomorphism;
D O I
10.1016/S0166-8641(97)00105-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be the so-called Hawaiian earring, i.e., H = {(x, y): (x - 1/n)(2) + y(2) = 1/n(2), 1 less than or equal to n < omega} and o = (0, 0). We prove: (1) If Y is a subspace of a line in the Euclidean plane R-2 and X its complement R-2 \ Y With x is an element of X, then the fundamental group pi(1)(X, x) is isomorphic to a subgroup of pi(1)(H-1 o). (2) Let Y be a subspace of a line in the Euclidean plane R-2. Then, pi(1)(R-2 \ Y, x) for x is an element of R-2 \ Y is isomorphic to pi(1)(H, o), if and only if there exists infinitely many connected components of Y which converge to a point outside of Y. (3) Every homomorphism from pi(1)(H, o) to itself is conjugate to a homomorphism induced from a continuous map. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:283 / 306
页数:24
相关论文
共 6 条
[1]   THE 1ST INTEGRAL SINGULAR HOMOLOGY GROUPS OF ONE POINT UNIONS [J].
EDA, K .
QUARTERLY JOURNAL OF MATHEMATICS, 1991, 42 (168) :443-456
[2]   FREE SIGMA-PRODUCTS AND NONCOMMUTATIVELY SLENDER-GROUPS [J].
EDA, K .
JOURNAL OF ALGEBRA, 1992, 148 (01) :243-263
[3]  
Eda K., 1991, TSUKUBA J MATH, V15, P351
[4]  
Griffiths H. B., 1956, P LOND MATH SOC, V6, P455
[5]  
MORGAN JW, 1986, P LOND MATH SOC, V53, P562
[6]   CAN THE FUNDAMENTAL (HOMOTOPY) GROUP OF A SPACE BE THE RATIONALS [J].
SHELAH, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (02) :627-632