Simulation of stress-assisted localised corrosion using a cellular automaton finite element approach

被引:74
作者
Fatoba, O. O. [1 ,4 ]
Leiva-Garcia, R. [1 ]
Lishchuk, S. V. [1 ,2 ]
Larrosa, N. O. [3 ]
Akid, R. [1 ]
机构
[1] Univ Manchester, Sch Mat, Corros & Protect Ctr, Sackville St, Manchester M13 9PL, Lancs, England
[2] Sheffield Hallam Univ, Mat & Engn Res Inst, Howard St, Sheffield S1 1WB, S Yorkshire, England
[3] Univ Bristol, Dept Mech Engn, Solid Mech Res Grp, Bristol, Avon, England
[4] Westmoreland Mech Testing & Res Ltd, Banbury, England
关键词
Low alloy steel; Potentiostatic polarisation; Cellular automata; Finite Element analysis; Pitting corrosion; Modelling studies; FATIGUE CRACK INITIATION; PITTING CORROSION; ALUMINUM-ALLOY; STAINLESS-STEEL; PIPELINE STEEL; WAVE-FORM; GROWTH; PITS; BEHAVIOR; DEFORMATION;
D O I
10.1016/j.corsci.2018.03.029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the overall corrosion damage process is modelled sequentially using cellular automata (CA) to describe the localised corrosion component, and finite element analysis (FEA) to account for the mechanical component resulting from the stress concentration effect of the corrosion defect (pit). Synchronous execution of the CA and FEA, and provision of feedback between both provides a good approximation of stress-assisted pit development. Qualitative and quantitative comparison of simulation results with experimental measurements show good agreement. In particular, the model shows that mechanical effects, notably plastic strain, accelerates the rate of development of localised corrosion.
引用
收藏
页码:83 / 97
页数:15
相关论文
共 91 条
[51]   Model to Predict Internal Pitting Corrosion of Oil and Gas Pipelines [J].
Papavinasam, S. ;
Doiron, A. ;
Revie, R. W. .
CORROSION, 2010, 66 (03)
[52]  
Papavinasam S., 2005, NACE CORROS C, P1
[53]   THE SIGNIFICANCE OF THE LOCAL ELECTRODE POTENTIAL WITHIN PITS, CREVICES AND CRACKS [J].
PICKERING, HW .
CORROSION SCIENCE, 1989, 29 (2-3) :325-341
[54]   Computational simulation of multi-pit corrosion process in materials [J].
Pidaparti, Ramana M. ;
Fang, Long ;
Palakal, Mathew J. .
COMPUTATIONAL MATERIALS SCIENCE, 2008, 41 (03) :255-265
[55]   A probability-based model for growth of corrosion pits in aluminium alloys [J].
Rajasankar, J ;
Iyer, NR .
ENGINEERING FRACTURE MECHANICS, 2006, 73 (05) :553-570
[56]   Effect of different environmental parameters on pitting behavior of AISI type 316L stainless steel: Experimental studies and neural network modeling [J].
Ramana, K. V. S. ;
Anita, T. ;
Mandal, Sumantra ;
Kahappan, S. ;
Shaikh, H. ;
Sivaprasad, P. V. ;
Dayal, R. K. ;
Khatak, H. S. .
MATERIALS & DESIGN, 2009, 30 (09) :3770-3775
[57]   A MONTE-CARLO SIMULATION OF LOCALIZED CORROSION [J].
REIGADA, R ;
SAGUES, F ;
COSTA, JM .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (03) :2329-2337
[58]  
Roberge P.R., 2008, Corrosion Engineering, Vfirst
[59]   Effect of pitting corrosion on fatigue crack initiation and fatigue life [J].
Rokhlin, SI ;
Kim, JY ;
Nagy, H ;
Zoofan, B .
ENGINEERING FRACTURE MECHANICS, 1999, 62 (4-5) :425-444
[60]   Effect of stresses on the electrochemical corrosion of steel in aqueous media [J].
Romaniv, OM ;
Heneha, BY ;
Huta, OM ;
Vasylechko, VO .
MATERIALS SCIENCE, 1996, 32 (06) :760-763