Simulation of stress-assisted localised corrosion using a cellular automaton finite element approach

被引:74
作者
Fatoba, O. O. [1 ,4 ]
Leiva-Garcia, R. [1 ]
Lishchuk, S. V. [1 ,2 ]
Larrosa, N. O. [3 ]
Akid, R. [1 ]
机构
[1] Univ Manchester, Sch Mat, Corros & Protect Ctr, Sackville St, Manchester M13 9PL, Lancs, England
[2] Sheffield Hallam Univ, Mat & Engn Res Inst, Howard St, Sheffield S1 1WB, S Yorkshire, England
[3] Univ Bristol, Dept Mech Engn, Solid Mech Res Grp, Bristol, Avon, England
[4] Westmoreland Mech Testing & Res Ltd, Banbury, England
关键词
Low alloy steel; Potentiostatic polarisation; Cellular automata; Finite Element analysis; Pitting corrosion; Modelling studies; FATIGUE CRACK INITIATION; PITTING CORROSION; ALUMINUM-ALLOY; STAINLESS-STEEL; PIPELINE STEEL; WAVE-FORM; GROWTH; PITS; BEHAVIOR; DEFORMATION;
D O I
10.1016/j.corsci.2018.03.029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the overall corrosion damage process is modelled sequentially using cellular automata (CA) to describe the localised corrosion component, and finite element analysis (FEA) to account for the mechanical component resulting from the stress concentration effect of the corrosion defect (pit). Synchronous execution of the CA and FEA, and provision of feedback between both provides a good approximation of stress-assisted pit development. Qualitative and quantitative comparison of simulation results with experimental measurements show good agreement. In particular, the model shows that mechanical effects, notably plastic strain, accelerates the rate of development of localised corrosion.
引用
收藏
页码:83 / 97
页数:15
相关论文
共 91 条
[31]   Spontaneous passivation observations during scale formation on mild steel in CO2 brines [J].
Han, Jiabin ;
Nesic, Srdjan ;
Yang, Yang ;
Brown, Bruce N. .
ELECTROCHIMICA ACTA, 2011, 56 (15) :5396-5404
[32]   THE EFFECT OF FLUID-FLOW ON GROWTH OF SINGLE CORROSION PITS [J].
HARB, JN ;
ALKIRE, RC .
CORROSION SCIENCE, 1989, 29 (01) :31-43
[33]   TRANSPORT AND REACTION DURING PITTING CORROSION OF NI IN 0.5M NACL .1. STAGNANT FLUID [J].
HARB, JN ;
ALKIRE, RC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (09) :2594-2600
[34]   Novel images of the evolution of stress corrosion cracks from corrosion pits [J].
Horner, D. A. ;
Connolly, B. J. ;
Zhou, S. ;
Crocker, L. ;
Turnbull, A. .
CORROSION SCIENCE, 2011, 53 (11) :3466-3485
[35]   Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law [J].
Ishihara, S ;
Saka, S ;
Nan, ZY ;
Goshima, T ;
Sunada, S .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2006, 29 (06) :472-480
[36]   Pit-to-crack transition in pre-corroded 7075-T6 aluminum alloy under cyclic loading [J].
Jones, K ;
Hoeppner, DW .
CORROSION SCIENCE, 2005, 47 (09) :2185-2198
[37]   Review of Corrosion Role in Gas Pipeline and Some Methods for Preventing It [J].
Karami, M. .
JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2012, 134 (05)
[38]   PREDICTION OF FATIGUE CRACK INITIATION LIFE BASED ON PIT GROWTH [J].
KONDO, Y .
CORROSION, 1989, 45 (01) :7-11
[39]   Corrosion-fatigue: a review of damage tolerance models [J].
Larrosa, N. O. ;
Akid, R. ;
Ainsworth, R. A. .
INTERNATIONAL MATERIALS REVIEWS, 2018, 63 (05) :283-308
[40]   Computational simulation of metastable pitting of stainless steel [J].
Li Lei ;
Li Xiaogang ;
Dong Chaofang ;
Huang Yizhong .
ELECTROCHIMICA ACTA, 2009, 54 (26) :6389-6395