Simulation of stress-assisted localised corrosion using a cellular automaton finite element approach

被引:74
作者
Fatoba, O. O. [1 ,4 ]
Leiva-Garcia, R. [1 ]
Lishchuk, S. V. [1 ,2 ]
Larrosa, N. O. [3 ]
Akid, R. [1 ]
机构
[1] Univ Manchester, Sch Mat, Corros & Protect Ctr, Sackville St, Manchester M13 9PL, Lancs, England
[2] Sheffield Hallam Univ, Mat & Engn Res Inst, Howard St, Sheffield S1 1WB, S Yorkshire, England
[3] Univ Bristol, Dept Mech Engn, Solid Mech Res Grp, Bristol, Avon, England
[4] Westmoreland Mech Testing & Res Ltd, Banbury, England
关键词
Low alloy steel; Potentiostatic polarisation; Cellular automata; Finite Element analysis; Pitting corrosion; Modelling studies; FATIGUE CRACK INITIATION; PITTING CORROSION; ALUMINUM-ALLOY; STAINLESS-STEEL; PIPELINE STEEL; WAVE-FORM; GROWTH; PITS; BEHAVIOR; DEFORMATION;
D O I
10.1016/j.corsci.2018.03.029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the overall corrosion damage process is modelled sequentially using cellular automata (CA) to describe the localised corrosion component, and finite element analysis (FEA) to account for the mechanical component resulting from the stress concentration effect of the corrosion defect (pit). Synchronous execution of the CA and FEA, and provision of feedback between both provides a good approximation of stress-assisted pit development. Qualitative and quantitative comparison of simulation results with experimental measurements show good agreement. In particular, the model shows that mechanical effects, notably plastic strain, accelerates the rate of development of localised corrosion.
引用
收藏
页码:83 / 97
页数:15
相关论文
共 91 条
[11]   Numerical investigation on torsional stress concentration factor at the semi elliptical corrosion pit [J].
Cerit, Muhammet .
CORROSION SCIENCE, 2013, 67 :225-232
[12]   Pitting corrosion in pipeline steel weld zones [J].
Chaves, Igor A. ;
Melchers, Robert E. .
CORROSION SCIENCE, 2011, 53 (12) :4026-4032
[13]   Transition from pitting to fatigue crack growth - Modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy [J].
Chen, GS ;
Wan, KC ;
Gao, M ;
Wei, RP ;
Flournoy, TH .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1996, 219 (1-2) :126-132
[14]   Cellular automaton modeling on the corrosion/oxidation mechanism of steel in liquid metal environment [J].
Chen, Huajun ;
Chen, Yitung ;
Zhang, Jinsuo .
PROGRESS IN NUCLEAR ENERGY, 2008, 50 (2-6) :587-593
[15]  
Cordoba-Torres P., 2001, ELECT ACTA, V46
[16]   MECHANISM OF ACCELERATION OF ELECTRODIC DISSOLUTION OF METALS DURING YIELDING UNDER STRESS [J].
DESPIC, AR ;
RAICHEFF, RG ;
BOCKRIS, JOM .
JOURNAL OF CHEMICAL PHYSICS, 1968, 49 (02) :926-&
[17]   Morphology of corroded surfaces Contribution of cellular automaton modelling [J].
di Caprio, D. ;
Vautrin-Ul, C. ;
Stafiej, J. ;
Saunier, J. ;
Chausse, A. ;
Feron, D. ;
Badiali, J. P. .
CORROSION SCIENCE, 2011, 53 (01) :418-425
[18]   Effect of pitting corrosion on fatigue life [J].
Dolley, E.J. ;
Lee, B. ;
Wei, R.P. .
Fatigue and Fracture of Engineering Materials and Structures, 2000, 23 (07) :555-560
[19]   Corrosion fatigue crack initiation in 12% chromium stainless steel [J].
Ebara, Ryuichiro .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 468 :109-113
[20]   Critical pitting temperature dependence of 2205 duplex stainless steel on dichromate ion concentration in chloride medium [J].
Ebrahimi, N. ;
Moayed, M. H. ;
Davoodi, A. .
CORROSION SCIENCE, 2011, 53 (04) :1278-1287